Abstract:
This paper presents a quick speed spatial index structure based on R-link tree. And K-means algorithm in the structure is used. In K-means algorithm, value-standard deviation is adopted to ascertain the initial clustering centres to improve convergence speed and ultimate K value is ascertained by distance criterion function to make K value most suitable. The structure sometimes consumes more storage than R-link but gains better performance. Furthermore, the more data quantities, the better this kind of structure’s overall performance is.
Key words:
spatial database,
R-link tree,
quad-tree,
spatial clustering,
spatial index
摘要: 提出基于R-link树的快速空间索引结构,在该结构中引入K-means算法。在K-means中采用均值-标准差确定初始聚类中心,提高了收敛速度。通过距离准则函数来优化K值,避免K值的盲目选取。与R-link相比空间开销代价有时略大,但换取了更高的性能,且数据量越多,索引结构的整体性能越好。
关键词:
空间数据库,
R-link树,
四叉树,
空间聚类,
空间索引
CLC Number:
ZHAO Wei; ZHANG Shu; LI Wen-hui. High-performance Space Index Method Based on K-means Algorithm[J]. Computer Engineering, 2008, 34(20): 4-6.
赵 伟;张 姝;李文辉. 基于K-means算法的高性能空间索引方法[J]. 计算机工程, 2008, 34(20): 4-6.