Abstract:
Aiming at the shortage of Apriori algorithm in find of frequent items such as numerous search-designate database set too many times and gennerate too many candidate itemsets, this paper proposes the TT-Apriori algorithm. This algorithm maps the tings-datebase into transaction-tree. Using the transaction tree can quickly find the maximal frequent itemsets. In the meamwhile it can simplify the calculation of support and avoid the scanning of the entire database and a large number of connecting steps to improve the efficiency of the mining.
Key words:
maximal frequent itemsets,
TT-Apriori algorithm,
transaction tree,
vector in plot
摘要: 针对Apriori算法在寻找频繁项集的过程中需多次扫描数据库、侯选项集过多、支持度计算过于复杂等问题,提出TT-Apriori算法。该算法将事务数据库转化成事务树,通过遍历事务树能直接快速地找到最大频繁项目集。简化支持度的计算,避免对整个数据库的扫描和大量的连接步骤,从而提高挖掘效率。
关键词:
最大频繁项集,
TT-Apriori算法,
事务树,
向量内积
CLC Number:
ZHANG Zhong-ping; ZHENG Wei-yi. Maximal Frequent Itemsets Mining Algorithm Based on Transaction Tree[J]. Computer Engineering, 2009, 35(15): 97-99,1.
张忠平;郑为夷. 基于事务树的最大频繁项集挖掘算法[J]. 计算机工程, 2009, 35(15): 97-99,1.