Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2009, Vol. 35 ›› Issue (22): 210-211.

• Artificial Intelligence and Recognition Technology • Previous Articles     Next Articles

Improved Incremental Learning Algorithm for Support Vector Data Description

HUA Xiao-peng, GAO Jun, TIAN Ming, LIU Qi-ming   

  1. (School of Information Engineering, Yancheng Institute of Technology, Yancheng 224001)
  • Received:1900-01-01 Revised:1900-01-01 Online:2009-11-20 Published:2009-11-20

改进的SVDD增量学习算法

花小朋,皋 军,田 明,刘其明   

  1. (盐城工学院信息工程学院,盐城 224001)

Abstract: An improved incremental learning algorithm for Support Vector Data Description(SVDD) is presented through the characteristic analysis of old samples and new samples. In the course of incremental learning, support vecter set and non-support vector set which may be converted into support vector in old samples and samples which violate Karush-Kuhn-Tucker(KKT) condition in new samples are chosen as training samples and the useless samples are discarded in this algorithm. Experimental results show that the training time is greatly reduced while the classification precision is guaranteed.

Key words: Support Vector Data Description(SVDD), Karush-Kuhn-Tucker(KKT) condition, support vector, incremental learning

摘要: 通过对SVDD增量学习中原样本和新增样本的特性分析,提出一种改进的SVDD增量学习算法。在增量学习过程中,该算法选取原样本的支持向量集和非支持向量中可能转为支持向量的样本集以及新增样本中违反KKT条件的样本作为训练样本集,舍弃对最终分类无用的样本。实验结果表明,该算法在保证分类精度的同时减少了训练时间。

关键词: 支持向量数据描述, KKT条件, 支持向量, 增量学习

CLC Number: