Abstract:
The union of fuzzy logic and the neural network forms the fuzzy neural network, it simultaneously has the advantages of expressing the human knowledge, storing and learning distribution information storage. This paper proposes a Dynamic Fuzzy-Neural Network(D-FNN) algorithm based on parameter adjusting. It uses Extended Kalman Filter(EKF) method to divide the overall algorithm into the linearity and the misalignment part. The linear parameter is decided by Least Squares(LS) method and the filter method, the misalignment parameter is directly decided by the training sample and heuristic method, the linearity and the misalignment parameter can carry on the real-time renewal. Simulation results indicate that this algorithm can guarantee more succinct structure and shorter learning time.
Key words:
Dynamic Fuzzy-Neural Network(D-FNN),
fuzzy logic,
Extended Kalman Filter(EKF)
摘要: 模糊逻辑与神经网络结合形成的模糊神经网络同时具有易于表达人类知识、存储与学习分布信息的优点,基于此,提出一种基于参数调整的动态模糊神经网络算法。采用扩展卡尔曼滤波器法将全局算法划分为线性和非线性部分,线性参数由最小二乘法和滤波器法决定,非线性参数由训练样本和启发式法直接决定,线性和非线性参数可进行实时更新。仿真结果表明,该算法能保证更简洁的结构和更短的学习时间。
关键词:
动态模糊神经网络,
模糊逻辑,
扩展卡尔曼滤波器
CLC Number:
ZHANG De-feng; ZHOU Ling; SUN Ya-min; MA Zi-long. Dynamic Fuzzy Neural Network Algorithm Based on Parameter Adjusting[J]. Computer Engineering, 2010, 36(06): 192-195.
张德丰;周 灵;孙亚民;马子龙. 基于参数调整的动态模糊神经网络算法[J]. 计算机工程, 2010, 36(06): 192-195.