Abstract:
Aiming at the problem that existing steganalysis algorithm has poor detection performance, this paper presents a universal steganalysis algorithm based on multi-wavelet statistics feature. Image is decomposed to multi-scale and multi-direction through multi-wavelet transform. Then two kinds of statistics features are got through every sub-image. The Support Vector Machine(SVM) is trained on these statistic features to construct a universal steganalysis. Results show that this algorithm can catch more effective features of image and it has correct detection rate compared with Farid algorithm.
Key words:
steganalysis,
multi-wavelet,
Support Vector Machine(SVM)
摘要: 针对现有隐写分析算法检测性能较差的问题,提出一种基于多小波统计特征的通用隐写分析算法。该算法采用多小波变换对样本图像进行多尺度分解,在各子带中提取广义高斯模型和多小波高阶统计特征,通过结合支持向量机分类器对大量图像样本进行隐写分析。结果表明,与经典的Farid算法相比,该算法提取的多小波统计特征更有效,且具有更高的检测率。
关键词:
隐写分析,
多小波,
支持向量机
CLC Number:
LI San-Beng. Universal Steganalysis Algorithm Based on Multi-wavelet Statistics Feature[J]. Computer Engineering, 2010, 36(21): 164-166.
李三平. 基于多小波统计特征的通用隐写分析算法[J]. 计算机工程, 2010, 36(21): 164-166.