Abstract:
According to the time series of mobile communications traffic, this paper adopts Support Vector Regression(SVR) model which choses its hyper-parameters based on Simulated Annealing(SA) algorithms. It compares the forecasting effects of ARIMA, ANN and SVR. The influence on traffic forecasting from three hyper-parameter selection methods such as grid, GA and SA is comparatively studied. Experimental results show that the forecasting of SA-SVR is accurate and less time-consuming, it is an effective method of forecasting mobile communication traffic.
Key words:
mobile communication traffic forecasting,
Simulated Annealing(SA) algorithms,
Support Vector Regression(SVR)
摘要: 根据移动通信话务量的时间序列,采用基于模拟退火(SA)算法对超参数选择的支持向量回归机(SVR)进行建模预测。比较ARIMA、人工神经网络和SVR 3种模型的预测效果,并对比研究网格法、遗传算法和SA 3种SVR超参数选择方法对预测效果的影响。实验结果表明,SA-SVR预测精度高、耗时少,是一种预测移动通信话务量的有效方法。
关键词:
移动通信话务量预测,
模拟退火算法,
支持向量回归机
CLC Number:
TAN Yan-Feng, GU Zhen-Gong, QIN Ti-Zhong, CHANG Chun, WANG Gao. Application of SA-SVR in Mobile Communication Traffic Forecasting[J]. Computer Engineering, 2010, 36(22): 195-196.
谭艳峰, 贾振红, 覃锡忠, 常春, 王浩. SA-SVR在移动通信话务量预测中的应用[J]. 计算机工程, 2010, 36(22): 195-196.