Abstract:
A new +L-R feature selection algorithm is proposed which combines trace ratio criterion selection and +L-R method based on error region, it uses trace ratio selection to obtain a optimal subset and uses error region by +L-R selection to get a new feature which can classify error sample efficiently in the region of error samples and error classification rate can be decreased efficiently. Using +L-R algorithm can reduce data redundancy. Experimental results show that the proposed algorithm improves trace ratio criterion significantly and lower error rate can be achieved at the same time.
Key words:
error region,
trace ratio criterion,
feature selection,
machine learning,
pattern recognition
摘要: 提出一种将迹比准则和基于错分区域的+L-R方法相结合的特征选择算法。该算法使用迹比算法得到优秀特征子集,对分类产生的错分区域进行+L-R选择得到新特征,新特征可以区分之前被错分的数据,从而降低错分率。采用+L-R算法降低数据冗余。实验结果表明,该算法有效改进迹比准则特征选择算法,同时降低错分率。
关键词:
错分区域,
迹比准则,
特征选择,
机器学习,
模式识别
CLC Number:
FENG Zong-Han, TUN Xiao-Dun. Feature Selection Algorithm Based on Trace Ratio Criterion and +L-R Method[J]. Computer Engineering, 2011, 37(17): 136-139.
冯宗翰, 吴小俊. 基于迹比准则与+L-R方法的特征选择算法[J]. 计算机工程, 2011, 37(17): 136-139.