Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2011, Vol. 37 ›› Issue (19): 171-173.

• Networks and Communications • Previous Articles     Next Articles

Particle Swarm Optimization Algorithm with Dynamic Learning Objects

CAO Zhi-fang, WANG Guo-yin, SHEN Yuan-xia   

  1. (School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)
  • Received:2011-04-27 Online:2011-10-05 Published:2011-10-05

一种动态学习对象的粒子群优化算法

曹智方,王国胤,申元霞   

  1. (重庆邮电大学计算机科学与技术学院,重庆 400065)
  • 作者简介:曹智方(1983-),男,硕士研究生,主研方向:智能信息处理,粒子群优化算法;王国胤,教授、博士生导师;申元霞,博士研究生
  • 基金资助:
    国家自然科学基金资助项目(60773113);重庆市杰出青年科学基金资助项目(2008BA2041);重庆市自然科学基金资助重点项目(2008BA2017)

Abstract: To overcome the disadvantage of Particle Swarm Optimization(PSO) algorithm such as premature, bad convergence precision, based on feedback of swarm diversity, a PSO algorithm with Dynamic Learning Objects(PSO-DLO) is presented. In the algorithm swarm diversity is used to control the learning objects, the strategy relieves the lost of swarm diversity, which is helpful for the global search. Experiments of three typical multi-modal functions indicate that the algorithm can effectively avoid premature and achieve better global search ability.

Key words: Particle Swarm Optimization(PSO), premature, feedback, swarm diversity, multi-modal function

摘要: 针对粒子群优化算法容易早熟、收敛精度低等问题,基于群体多样性反馈的思想,提出一种动态学习对象的粒子群优化算法。该算法采用群体多样性动态控制粒子的学习对象,减缓群体多样性的丧失速度,有利于群体的全局寻优。对3种典型多峰函数的仿真结果表明,该算法可以有效避免早熟问题,具有较好的全局寻优能力。

关键词: 粒子群优化, 早熟, 反馈, 群体多样性, 多峰函数

CLC Number: