Abstract:
Aiming at the problem of the over-smoothness and blurs the details, which are caused by exponential kernel function used in original non-local means algorithm, this paper proposes a cosine Gaussian kernel function based on exponential kernel function and combined with a cosine coefficient and Gaussian kernel. It is used in the weight-computing of the improved algorithm. Experimental results show the algorithm has a superior denoising performance than the original one, especially with detail information in the image, and PSNR can be improved by 1.6 dB at most.
Key words:
image processing,
image denoising,
non-local means,
weighted average,
Gaussian noise,
weighted kernel function
摘要: 传统非局部均值滤波算法中使用指数型加权核函数,容易导致图像细节因过度平滑而变得模糊。为此,在指数型加权核函数的基础上,采用余弦系数加权的高斯核函数,设计一种改进的非局部均值图像去噪算法,并将其应用于加权系数计算中。实验结果表明,该算法的去噪性能优于传统算法,且能更好地保留原图像的细节信息,峰值信噪比最大可以提升1.6 dB。
关键词:
图像处理,
图像去噪,
非局部均值,
加权平均,
高斯噪声,
加权核函数
CLC Number:
LIU Xiao-Meng, TIAN Yu, HE Hui, ZHONG Yuan-Gong. Improved Non-local Means Algorithm for Image Denoising[J]. Computer Engineering, 2012, 38(04): 199-201.
刘晓明, 田雨, 何徽, 仲元红. 一种改进的非局部均值图像去噪算法[J]. 计算机工程, 2012, 38(04): 199-201.