Abstract:
One-technology do not solve multi-class classification problem, on the basis of this, a basic probability output distribution method based on One-Against-All(OAA) Support Vector Machine(SVM) is proposed, a multi-class model based on Support Vector Machine(SVM) probability output and evidence theory is put forward by integrating one-against-all multi-class SVM with max-entropy D-S theory, . Simulations results on three datasets of UCI repository show that the method has higher classification precision than hard output method OAA and OAO.
Key words:
evidence theory,
Support Vector Machine(SVM),
output probability modeling,
information fusion
摘要: 单一技术无法有效解决多类分类问题。为此,提出一种基于一对多支持向量机(SVM)的基本概率分配输出方法,并与置信最大熵模型的D-S证据组合方法结合,给出基于SVM概率输出和证据理论的多分类模型。在3种UCI标准数据集上的仿真结果表明,该方法的分类精度优于传统的一对多和一对一硬输出方法,是一种有效的多类分类方法。
关键词:
证据理论,
支持向量机,
输出概率建模,
信息融合
CLC Number:
QUAN Wen, WANG Xiao-Dan, WANG Jian, ZHANG Yu-Xi. Multi-class Classification Method Based on SVM Probability Output and Evidence Theory[J]. Computer Engineering, 2012, 38(5): 167-169.
权文, 王晓丹, 王坚, 张玉玺. 基于SVM概率输出与证据理论的多分类方法[J]. 计算机工程, 2012, 38(5): 167-169.