Abstract:
A nonmonotonic trust region algorithm for solving Semidefinite Programming(SDP) is proposed in this paper. The equivalent smoothing equations of the optimal condition are obtained by exploiting the Fischer-Burmeister function that is extended to the matrix domain, and the center of the path of SDP is rewritten. The algorithm makes full use of first-order gradient information of the current iteration point to solve the trust region subproblem, and a new trust region radius selection mechanism is proposed. Simulation results show that the algorithm runs faster than the classical interior point algorithm for general scale semidefinite programming problems(n, m≤30), for large-scale semidefinite programming problem(n, m>30) the algorithm is suitable for handling Norm min, Lovasz these two kinds of problems.
Key words:
Semidefinite Programming(SDP),
trust region algorithm,
nonmonotonic strategy,
interior algorithm,
Fischer-Burmeister function,
unconstrained optimization problem
摘要: 提出一种求解半定规划的非单调信赖域算法。利用推广至矩阵域的光滑Fischer-Burmeister函数,转化半定规划的最优性条件,改写半定规划的中心路径,得到与其等价的无约束优化问题的非线性可微光滑方程组,在求解信赖域子问题时,利用当前迭代点的一阶梯度信息,给出信赖域半径的选取机制。仿真结果表明,与经典的内点算法相比,对于一般规模(n, m≤30)的半定规划问题,该算法的运行速度较快。对于大规模的半定规划问题(n, m>30),该算法更适合处理Norm min、Lovasz这2类问题。
关键词:
半定规划,
信赖域算法,
非单调策略,
内点算法,
Fischer-Burmeister函数,
无约束优化问题
CLC Number:
GAO Lei-fu, YU Dong-mei, ZHANG Xing-tao. A Nonmonotonic Trust Region Algorithm for Solving Semidefinite Programming[J]. Computer Engineering.
高雷阜,于冬梅,张兴涛. 一种求解半定规划的非单调信赖域算法[J]. 计算机工程.