Abstract:
This essay puts forward an improved ant colony algorithm based on the introduction of the variability of non-uniform mutation operator. It makes the path optimization, which uses optimized ant colony algorithm to complete the task of ant colony after the completion of one iteration and non-uniform mutation operator mutation. It can speed up the convergence of the algorithm. The satisfactory results are reached after N evolutions. Simulation results demonstrate that the optimal solution and stability of the improved algorithm are better than the basic ant algorithm and Ant Colony Optimization(ACO) algorithm.
Key words:
Travelling Salesman Problem(TSP),
Ant Colony Optimization(ACO) algorithm,
mutation operator,
Genetic Algorithm(GA),
non-uniform mutation
摘要: 为解决对称旅行商问题,在改进蚁群优化算法的基础上,提出一种引入非均匀变异算子的改进算法。在路径寻优时采用改进的蚁群优化算法,且在完成一次循环迭代后,运用非均匀变异算子对已完成该次任务的蚁群进行变异处理,从而加快算法收敛速度,经过N次进化直至达到满意结果。仿真结果表明,在寻最优解的能力和算法稳定性方面,该算法比基本蚁群算法和蚁群优化算法更强。
关键词:
旅行商问题,
蚁群优化算法,
变异算子,
遗传算法,
非均匀变异
CLC Number:
GONG Yue, WU Hang, ZHAO Fei. Improved Ant Colony Optimization Algorithm Based on Non-uniform Mutation Operator[J]. Computer Engineering.
龚跃,吴航,赵飞. 基于非均匀变异算子的改进蚁群优化算法[J]. 计算机工程.