Abstract:
Aiming at the slow convergence of DE/rand/1/bin strategy, this paper presents a hybrid optimization algorithm named SMDE incorporated Simplex Method(SM) into Differential Evolution(DE) algorithm. It takes use of good global searching ability of DE and good local searching ability and fast convergence of SM, so that the convergence speed and solution precision of DE are improved. Experimental results on several classical Benchmarks complex functions show that the hybrid optimization algorithm is effective, efficient and fairly robust to initial conditions, and its performances excels those single optimization methods.
Key words:
complex nonlinear function,
Differential Evolution(DE) algorithm,
Simplex Method(SM),
hybrid optimization algorithm
摘要: 针对DE/rand/1/bin方案收敛速度慢的缺点,提出一种将单纯形确定性算法和差分进化随机搜索算法相结合的混合优化算法。利用差分进化算法搜索范围广、全局搜索能力强和单纯形算法局部搜索能力强、收敛速度快的特性,较大地提高了差分进化算法的收敛速度和搜索精度。典型Benchmarks复杂函数优化实验表明,该算法优化效率高、优化性能好、对初值具有较强的鲁棒性,性能优于单一的优化方法。
关键词:
复杂非线性函数,
差分进化算法,
单纯形法,
混合优化算法
CLC Number:
LIU Jie; WU Liang-hong; LIU Jian-xun. Hybrid Differential Evolution Algorithm Based on Simplex Operator[J]. Computer Engineering, 2009, 35(13): 179-182.
刘 洁;吴亮红;刘建勋. 基于单纯形算子的混合差分进化算法[J]. 计算机工程, 2009, 35(13): 179-182.