Abstract:
Image information contains a lot of uncertainty which may cause the unsatisfactory image segmentation effect. In order to solve this problem, this paper proposes a algorithm of color image segmentation based on granular computing and cloud model. It granulates color images in HSV color space, and cloud-granule concept is generated in multi-granularity and multi-level, finally the color image is segmented. Experimental results show that the proposed algorithm has better performance compares with PCNN and K-means algorithm.
Key words:
granular computing,
cloud model,
color image segmentation,
cloud transformation,
multi-granularity,
HSV space
摘要: 图像信息中存在的不确定性问题会影响图像的分割效果。为此,提出一种基于粒计算和云模型的彩色图像分割算法。研究多粒度认知模型,在HSV颜色空间中利用云模型构建彩色图像的信息粒,进行多粒度、多层次的云粒合成,实现彩色图像分割。实验结果表明,与PCNN算法和K均值算法相比,该算法的分割效果较好。
关键词:
粒计算,
云模型,
彩色图像分割,
云变换,
多粒度,
HSV空间
CLC Number:
MA Hong-Yao, WANG Guo-Yin, ZHANG Qing-Hua, XU Ning. Multi-granularity Color Image Segmentation Based on Cloud Model[J]. Computer Engineering, 2012, 38(20): 184-187.
马鸿耀, 王国胤, 张清华, 徐宁. 基于云模型的多粒度彩色图像分割[J]. 计算机工程, 2012, 38(20): 184-187.