计算机工程 ›› 2019, Vol. 45 ›› Issue (7): 222-228.doi: 10.19678/j.issn.1000-3428.0051041

• 人工智能及识别技术 • 上一篇    下一篇

一种自适应的混合协同过滤推荐算法

杨佳莉1, 李直旭1,3, 许佳捷1, 赵朋朋1, 赵雷1, 周晓方1,2   

  1. 1. 苏州大学 计算机科学与技术学院, 江苏 苏州 215006;
    2. 昆士兰大学 信息技术与电子工程学院, 澳大利亚 布里斯班 4067;
    3. 广东省大数据分析与处理重点实验室, 广州 510006
  • 收稿日期:2018-04-02 修回日期:2018-06-05 出版日期:2019-07-15 发布日期:2019-07-23
  • 作者简介:杨佳莉(1993-),女,硕士研究生,主研方向为推荐系统、机器学习;李直旭(通信作者)、许佳捷、赵朋朋,副教授;赵雷、周晓方,教授。
  • 基金项目:
    国家自然科学基金(61632016);江苏省高等学校自然科学研究重大项目(17KJA520003)。

An Adaptive Hybrid Collaborative Filtering Recommendation Algorithm

YANG Jiali1, LI Zhixu1,3, XU Jiajie1, ZHAO Pengpeng1, ZHAO Lei1, ZHOU Xiaofang1,2   

  1. 1. College of Computer Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China;
    2. School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane 4067, Australia;
    3. Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou 510006, China
  • Received:2018-04-02 Revised:2018-06-05 Online:2019-07-15 Published:2019-07-23

摘要: 为解决协同过滤算法在处理数据量较大时存在推荐效率低的问题,提出一种自适应混合协同推荐算法。根据待推荐用户活跃度和目标物品新鲜度调节模型权重,基于张量分解计算物品间的相似度,通过短路径枚举叠加生成预测结果。实验结果表明,与CBCF算法相比,该算法推荐准确率提高了28.6%。

关键词: 推荐系统, 张量分解, 协同过滤算法, 自适应混合, 短路径

Abstract: In order to solve the problem that the collaborative filtering algorithm has low recommendation efficiency when processing a large amount of data,an adaptive hybrid collaborative recommendation algorithm is proposed.The algorithm adjusts the weight of the model based on the to-be-recommended user activity and the freshness of target items.The similarity between items is calculated based on the tensor decomposition.The prediction result is generated based on short path enumeration superposition.Experimental results show that compared with the CBCF algorithm,the proposed algorithm improves the recommendation accuracy by 28.6%.

Key words: recommendation system, tensor decomposition, collaborative filtering algorithm, adaptive hybrid, short path

中图分类号: