[1] 刘华玲, 马俊, 张国祥.基于深度学习的内容推荐算法研究综述[J].计算机工程, 2021, 47(7):1-12. LIU H L, MA J, ZHANG G X.Review of studies on deep learning-based content recommendation algorithms[J].Computer Engineering, 2021, 47(7):1-12.(in Chinese) [2] FELFERNIG A, JERAN M, NINAUS G, et al.Toward the next generation of recommender systems:applications and research challenges[M]//TSIHRINTZIS G A, VIRVOU M, JAIN L C.Multimedia services in intelligent environments.Berlin, Germany:Springer, 2013:81-98. [3] HU Y F, KOREN Y, VOLINSKY C.Collaborative filtering for implicit feedback datasets[C]//Proceedings of the 8th IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2009:263-272. [4] HE X N, LIAO L Z, ZHANG H W, et al.Neural collaborative filtering[C]//Proceedings of International World Wide Web Conferences Steering Committee.Washington D.C., USA:IEEE Press, 2017:173-182. [5] BURGESS C P, HIGGINS I, PAL A, et al.Understanding disentangling in β-VAE[EB/OL].[2021-10-07].https://arxiv.org/abs/1804.03599. [6] LIANG D W, KRISHNAN R G, HOFFMAN M D, et al.Variational autoencoders for collaborative filtering[C]//Proceedings of 2018 World Wide Web Conference.New York, USA:ACM Press, 2018:689-698. [7] POLATO M, CARRARO T, AIOLLI F.Conditioned variational autoencoder for top-N item recommendation[EB/OL].[2021-10-07].https://arxiv.org/abs/2004. 11141. [8] SIDDHARTH N, PAIGE B, DESMAISON A, et al.Learning disentangled representations for recommendation[EB/OL].[2021-10-07].http://stat.columbia.edu/~cunningham/teaching/GR8201/STAT_GR8201_2019_SPRG_slides.pdf. [9] KINGMA D P, WELLING M.Auto-encoding variational Bayes[EB/OL].[2021-10-07].https://arxiv.org/abs/1312. 6114v4. [10] MIAO Y S, YU L, BLUNSOM P.Neural variational inference for text processing[EB/OL].[2021-10-07].https://arxiv.org/abs/1511.06038. [11] LU Y, HUANG B.Structured output learning with conditional generative flows[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4):5005-5012. [12] TAHIR R, SARGANO A B, HABIB Z.Voxel-based 3D object reconstruction from single 2D image using variational autoencoders[J].Mathematics, 2021, 9(18):2288. [13] SOHN K, YAN X C, LEE H, et al.Learning structured output representation using deep conditional generative models[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge, USA:MIT Press, 2015:3483-3491 [14] BOUCHACOURT D, TOMIOKA R, NOWOZIN S.Multi-level variational autoencoder:learning disentangled representations from grouped observations[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2018:1-10. [15] OUYANG Y X, LIU W Q, RONG W G, et al.Autoencoder-based collaborative filtering[M].Berlin, Germany:Springer, 2014. [16] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al.Improving neural networks by preventing co-adaptation of feature detectors[EB/OL].[2021-10-07].https://arxiv.org/abs/1207.0580. [17] LUONG M T, PHAM H, MANNING C D.Effective approaches to attention-based neural machine translation[EB/OL].[2021-10-07].https://arxiv.org/abs/1508. 04025. [18] SPERBER M, NIEHUES J, NEUBIG G, et al.Self-attentional acoustic models[EB/OL].[2021-10-07].https://arxiv.org/abs/1803.09519v1. [19] BRAUN S, NEIL D, ANUMULA J, et al.Multi-channel attention for end-to-end speech recognition[EB/OL].[2021-10-07].https://www.researchgate.net/publication/327388671_Multi-channel_Attention_for_End-to-End_Speech_Recognition. [20] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[EB/OL].[2021-10-07].https://arxiv.org/abs/1706.03762. [21] KINGMA D P, BA J.Adam:a method for stochastic optimization[EB/OL].[2021-10-07].https://arxiv.org/abs/1412.6980. [22] GLOROT X, BENGIO Y.Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of International Conference on Artificial Intelligence and Statistics.Washington D.C., USA:IEEE Press, 2010:249-256. [23] HE X N, LIAO L Z, ZHANG H W, et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.Geneva, Switzerland:International World Wide Web Conferences Steering Committee, 2017:1-8. [24] JI S, PAN S, CAMBRIA E, et al.A survey on knowledge graphs:representation, acquisition, and applications[EB/OL].[2021-10-07].https://blog.csdn.net/byn12345/article/details/106128275. [25] WANG X, HE X N, WANG M, et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2019:165-174. |