[1] 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J].计算机学报,2018,41(7):1619-1647. HUANG L W,JIANG B T,LÜ S Y,et al.Survey on deep learning based recommender systems[J].Chinese Journal of Computers,2018,41(7):1619-1647.(in Chinese) [2] WANG H W,ZHANG F Z,XIE X,et al.DKN:deep knowledge-aware network for news recommendation[C]//Proceedings of the World Wide Web Conference.New York,USA:ACM Press,2018:1835-1844. [3] 翟丽丽,邢海龙,张树臣.基于情境聚类优化的移动电子商务协同过滤推荐研究[J].情报理论与实践,2016,39(8):106-110. ZHAI L L,XING H L,ZHANG S C.Research on mobile e-commerce collaborative filtering recommendation based on context clustering optimization[J]. Information Studies:Theory & Application,2016,39(8):106-110.(in Chinese) [4] WANG X,WANG R J,SHI C,et al.Multi-component graph convolutional collaborative filtering[EB/OL].[2022-06-08].https://arxiv.org/abs/1911.10699v1. [5] TAN Q Y,LIU N H,ZHAO X,et al.Learning to hash with graph neural networks for recommender systems[C]//Proceedings of the Web Conference.New York,USA:ACM Press,2020:1988-1998. [6] LEE H,AHN Y,LEE H,et al.Quote recommendation in dialogue using deep neural network[C]//Proceedings of the 39th International Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2016:957-960. [7] COVINGTON P,ADAMS J,SARGIN E.Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th Conference on Recommender Systems.New York,USA:ACM Press,2016:191-198. [8] DA'U A,SALIM N.Recommendation system based on deep learning methods:a systematic review and new directions[J].Artificial Intelligence Review,2020,53(4):2709-2748. [9] ARRIETA A B,DIAZ-RODRIGUEZ N,DEL SER J,et al.Explainable Artificial Intelligence (XAI):concepts,taxonomies,opportunities and challenges toward responsible AI[J].Information Fusion,2020,58:82-115. [10] AMINA A,MOHAMMED B.Peeking inside the black-box:a survey on Explainable Artificial Intelligence (XAI)[J].IEEE Access,2018,6:52138-52160. [11] CAO Y X,WANG X,HE X N,et al.Unifying knowledge graph learning and recommendation:towards a better understanding of user preferences[C]//Proceedings of the World Wide Web Conference.New York,USA:ACM Press,2019:151-161. [12] WANG X,WANG D X,XU C R,et al.Explainable reasoning over knowledge graphs for recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press,2019:5329-5336. [13] YU X,REN X,SUN Y Z,et al.Personalized entity recommendation:a heterogeneous information network approach[C]//Proceedings of the 7th International Conference on Web Search and Data Mining.New York,USA:ACM Press,2014:283-292. [14] RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence.New York,USA:ACM Press,2009:452-461. [15] WANG H W,ZHANG F Z,WANG J L,et al.RippleNet:propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th International Conference on Information and Knowledge Management.New York,USA:ACM Press,2018:417-426. [16] WANG X,HE X N,CAO Y X,et al.KGAT:knowledge graph attention network for recommendation[C]//Proceedings of the 25th International Conference on Knowledge Discovery & Data Mining.New York,USA:ACM Press,2019:950-958. [17] WANG H W,ZHAO M,XIE X,et al.Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the World Wide Web Conference.New York,USA:ACM Press,2019:3307-3313. [18] WANG H W,ZHANG F Z,ZHAO M,et al.Multi-task feature learning for knowledge graph enhanced recommendation[C]//Proceedings of World Wide Web Conference.New York,USA:ACM Press,2019:13-17. [19] HUANG J,ZHAO W X,DOU H J,et al.Improving sequential recommendation with knowledge-enhanced memory networks[C]//Proceedings of the 41st International Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2018:505-514. [20] WANG H,WANG N Y,YEUNG D Y.Collaborative deep learning for recommender systems[C]//Proceedings of the 21th International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2015:1235-1244. [21] WU Y,DUBOIS C,ZHENG A X,et al.Collaborative denoising auto-encoders for top-N recommender systems[C]//Proceedings of the 9th International Conference on Web Search and Data Mining.New York,USA:ACM Press,2016:153-162. [22] LI J,REN P J,CHEN Z M,et al.Neural attentive session-based recommendation[EB/OL].[2022-06-08].https://arxiv.org/pdf/1711.04725.pdf. [23] WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd Annual International Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2019:165-174. [24] HE X N,DENG K,WANG X,et al.LightGCN:simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2020:639-648. [25] PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:online learning of social representations[C]//Proceedings of the 20th International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2014:701-710. [26] GROVER A,LESKOVEC J.Node2vec:scalable feature learning for networks[EB/OL].[2022-06-08].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108654/pdf/nihms825755.pdf. [27] ZHAO T,XIAO R,SUN C,et al.Personalized recommendation algorithm integrating roulette walk and combined time effect[J].Journal of Computer Applications,2014,34(4):1114-1117. [28] PAUDEL B,BERNSTEIN A.Random walks with erasure:diversifying personalized recommendations on social and information networks[C]//Proceedings of the Web Conference.New York,USA:ACM Press,2021:2046-2057. [29] RENDLE S.Factorization machines with libFM[J].ACM Transactions on Intelligent Systems & Technology,2012,3(3):1-22. [30] ZHANG F Z,YUAN N J,LIAN D F,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:353-362. |