[1] MARZ N,WARREN J.Big data:principles and best practices of scalable real-time data systems[M].New York,USA:Manning Publications Co.,2015. [2] 刘青文.基于协同过滤的推荐算法研究[D].合肥:中国科学技术大学,2013. LIU Q W.Research on recommendation algorithm based on collaborative filtering[D].Hefei:University of Science and Technology of China,2013.(in Chinese) [3] GOLDBERG D,NICHOLS D,OKI B M,et al.Using collaborative filtering to weave an information tapestry[J].Communications of the ACM,1992,35(12):61-70. [4] RESNICK P,VARIAN H R.Recommender systems[J].Communications of the ACM,1997,40(3):56-58. [5] MAHMOOD T,RICCI F.Improving recommender systems with adaptive conversational strategies[C]//Proceedings of the 20th ACM Conference on Hypertext and Hypermedia.New York,USA:ACM Press,2009:73-82. [6] BURKE R.Hybrid Web recommender systems[M].Berlin,Germany:Springer,2007. [7] 朱扬勇,孙婧.推荐系统研究进展[J].计算机科学与探索,2015,9(5):513-525. ZHU Y Y,SUN J.Research progress of recommender system[J].Computer Science and Exploration,2015,9(5):513-525.(in Chinese) [8] LINDEN G,SMITH B,YORK J.Amazon.com recommendations:item-to-item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80. [9] CHENG H T,KOC L,HARMSEN J,et al.Wide and deep learning for recommender systems[C]//Proceedings of the 1st IEEE Workshop on Deep Learning for Recommender Systems.Washington D.C.,USA:IEEE Press,2016:7-10. [10] WANG H,WANG N,YEUNG D Y.Collaborative deep learning for recommender systems[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2015:1235-1244. [11] SEDHAIN S,MENON A K,SANNER S,et al.Autorec:autoencoders meet collaborative filtering[C]//Proceedings of the 24th IEEE International Conference on World Wide Web.Washington D.C.,USA:IEEE Press,2015:111-112. [12] COVINGTON P,ADAMS J,SARGIN E.Deep neural networks for youtube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems.New York,USA:ACM Press,2016:191-198. [13] SCHUTH A,OOSTERHUIS H,WHITESON S,et al.Multileave gradient descent for fast online learning to rank[C]//Proceedings of the 9th ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2016:457-466. [14] LI C,FENG H Y,DE RIJKE M.Cascading hybrid bandits:online learning to rank for relevance and diversity[EB/OL].[2020-12-10].https://arxiv.org/abs/1912.00508. [15] ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749. [16] BURKE R.Hybrid recommender systems:survey and experiments[J].User Modeling and User-Adapted Interaction,2002,12(4):331-370. [17] JANNACH D,ZANKER M,FELFERNIG A,et al.Recommender systems:an introduction[M].[S.1.]:Cambridge University Press,2010. [18] BAEZA-YATES R,RIBEIRO-NETO B.Modern information retrieval[M].New York,USA:ACM Press,1999. [19] PAZZANI M J,BILLSUS D.Content-based recommendation systems[M].Berlin,Germany:Springer,2007. [20] RENDLE S,KRICHENE W,ZHANG L,et al.Neural collaborative filtering vs.matrix factorization revisited[EB/OL].[2020-12-10].https://arxiv.org/abs/2005.09683. [21] XU Y,ZHU N.Hybrid recommendation algorithm based on long-term and short-term interest and matrix factorization for collaborative filtering[C]//Proceedings of JPCS'20.[S.l.]:IOP Publishing,2020:16-24. [22] 冯晨娇,梁吉业,宋鹏,等.基于极端评分行为的相似度计算[J].计算机科学,2020,47(2):31-36. FENG C J,LIANG J Y,SONG P,et al.Similarity calculation based on extreme scoring behavior[J].Computer Science,2020,47(2):31-36.(in Chinese) [23] DENG L,YU D.Deep learning:methods and applications[J].Foundations and Trends in Signal Processing,2014,7(3/4):197-387. [24] GOODFELLOW I,BENGIO Y,COURVILLE A,et al.Deep learning[M].Cambridge,USA:MIT Press,2016. [25] BILLSUSE D,PAZZANI M J.Learning collaborative information filters[C]//Proceedings of IEEE ICML'98.Washington D.C.,USA:IEEE Press,1998:46-54. [26] 王金辉.基于标签的协同过滤稀疏性问题研究[D].合肥:中国科学技术大学,2011. WANG J H.Research on sparsity of label-based collaborative filtering[D].Hefei:University of Science and Technology of China,2011.(in Chinese) [27] SCHEIN A I,POPESCUL A,UNGAR L H,et al.Methods and metrics for cold-start recommendations[C]//Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2002:253-260. [28] 吴焕,王晓箴,潘林,等.基于LINQ的多源异构数据查询中间件[J].计算机工程,2011,37(2):1-3. WU H,WANG X J,BAN L,et al.Multi-source heterogeneous data query middleware based on LINQ[J]. Computer Engineering,2011,37(2):1-3.(in Chinese) [29] ZHENG L,NOROOZI V,YU P S.Joint deep modeling of users and items using reviews for recommendation[C]//Proceedings of the 20th ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2017:425-434. [30] HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.Perth,Australia:[s.n.],2017:173-182. [31] HORNIK K.Approximation capabilities of multilayer feedforward networks[J].Neural Networks,1991,4(2):251-257. [32] HORNIK K,STINCHCOMBE M,WHITE H.Multilayer feedforward networks are universal approximators[J].Neural Networks,1989,2(5):359-366. [33] CHEN M,XU Z,WEINBERGER K,et al.Marginalized denoising autoencoders for domain adaptation[EB/OL].[2020-12-10].https://arxiv.org/ftp/arxiv/papers/1206/1206.4683.pdf. [34] LECUN Y,BOSER B,DENKER J S,et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551. [35] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [36] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [37] HE X,CHUA T S.Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2017:355-364. [38] GUO H F,TANG R M,YE Y M,et al.DeepFM:a factorization-machine based neural network for CTR prediction[EB/OL].[2020-12-10].https://arxiv.org/abs/1703.04247. [39] CHEN C,ZHAO P,LI L,et al.Locally connected deep learning framework for industrial-scale recommender systems[C]//Proceedings of the 26th IEEE International Conference on World Wide Web Companion.Washington D.C.,USA:IEEE Press,2017:769-770. [40] ALASHKAR T,JIANG S,WANG S,et al.Examples-rules guided deep neural network for makeup recommendation[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press,2017:941-947. [41] ZHANG W,DU T,WANG J.Deep learning over multi-field categorical data[C]//Proceedings of European Conference on Information Retrieval.Berlin,Germany:Springer,2016:45-57. [42] QU Y R,CAI H,REN K,et al.Product-based neural networks for user response prediction[EB/OL].[2020-12-10].https://arxiv.org/abs/1611.00144. [43] LIAN J,ZHOU X,ZHANG F,et al.xDeepFM:combining explicit and implicit feature interactions for recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York,USA:ACM Press,2018:1754-1763. [44] ELKAHKY A M,SONG Y,HE X.A multi-view deep learning approach for cross domain user modeling in recommendation systems[C]//Proceedings of the 24th IEEE International Conference on World Wide Web.Washington D.C.,USA:IEEE Press,2015:278-288. [45] ZHANG F,YUAN N J,LIAN D,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:353-362. [46] NGUYEN P,TOMEO P,DI NOIA T,et al.An evaluation of SimRank and personalized PageRank to build a recommender system for the web of data[C]//Proceedings of the 24th IEEE International Conference on World Wide Web.Washington D.C.,USA:IEEE Press,2015:1477-1482. [47] YU X,REN X,SUN Y,et al.Personalized entity recommendation:a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2014:283-292. [48] WANG C,BLEI D M.Collaborative topic modeling for recommending scientific articles[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2011:448-456. [49] HE R N,MCAULEY J.VBPR:visual Bayesian personalized ranking from implicit feedback[EB/OL].[2020-12-10].https://arxiv.org/abs/1510.01784. [50] CATHERINE R,COHEN W.TransNets:learning to transform for recommendation[C]//Proceedings of the 11th ACM Conference on Recommender Systems.New York,USA:ACM Press,2017:288-296. [51] KIM D,PARK C,OH J,et al.Convolutional matrix factorization for document context-aware recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems.New York,USA:ACM Press,2016:233-240. [52] ZHANG Q,WANG J,HUANG H,et al.Hashtag recommendation for multimodal Microblog using co-attention network[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2017:3420-3426. [53] ROSEWELT L A,RENJIT J A.A content recommendation system for effective e-learning using embedded feature selection and fuzzy DT based CNN[J].Journal of Intelligent and Fuzzy Systems,2020,39(8):1-14. [54] DAI H,WANG Y,TRIVEDI R,et al.Recurrent coevolutionary latent feature processes for continuous-time recommendation[C]//Proceedings of the 1st IEEE Workshop on Deep Learning for Recommender Systems.Washington D.C.,USA:IEEE Press,2016:29-34. [55] WU C Y,AHMED A,BEUTEL A,et al.Recurrent recommender networks[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2017:495-503. [56] CHO K,VAN MERRIENBOER B,BAHDANAU D,et al.On the properties of neural machine translation:encoder-decoder approaches[EB/OL].[2020-12-10].https://arxivarxiv:1409.1259. [57] BANSAL T,BELANGER D,MCCALLUM A.Ask the GRU:multi-task learning for deep text recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems.New York,USA:ACM Press,2016:107-114. [58] LI P,WANG Z,REN Z,et al.Neural rating regression with abstractive tips generation for recommendation[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2017:345-354. [59] CHEN Z,WANG X,XIE X,et al.Co-attentive multi-task learning for explainable recommendation[C]//Proceedings of IEEE IJCAI'19.Washington D.C.,USA:IEEE Press,2019:2137-2143. [60] TANG H,LIU J,ZHAO M,et al.Progressive Layered Extraction(PLE):a novel multi-task learning model for personalized recommendations[C]//Proceedings of the 14th ACM Conference on Recommender Systems.New York,USA:ACM Press,2020:269-278. [61] HANSEN C,HANSEN C,MAYSTRE L,et al.Contextual and sequential user embeddings for large-scale music recommendation[C]//Proceedings of the 14th ACM Conference on Recommender Systems.New York,USA:ACM Press,2020:53-62. [62] SI P.Approximate nearest neighbour search with the fukunaga & narendra algorithm[D].Barcelona,Spain:Polytechnic University of Catalonia,2011. [63] ZHOU J P,CHENG Z,PEREZ F,et al.TAFA:two-headed attention fused autoencoder for context-aware recommendations[C]//Proceedings of the 14th ACM Conference on Recommender Systems.New York,USA:ACM Press,2020:338-347. [64] WU G,VOLKOVS M,SOON C L,et al.Noise contrastive estimation for one-class collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2019:135-144. [65] WU Y,DUBOIS C,ZHENG A X,et al.Collaborative denoising auto-encoders for top-n recommender systems[C]//Proceedings of the 9th ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2016:153-162. [66] LIANG D,KRISHNAN R G,HOFFMAN M D,et al.Variational autoencoders for collaborative filtering[C]//Proceedings of 2018 IEEE World Wide Web Conference.Washington D.C.,USA:IEEE Press,2018:689-698. [67] WANG H,ZHAO Q,WU Q,et al.Global and local differential privacy for collaborative bandits[C]//Proceedings of the 14th ACM Conference on Recommender Systems.New York,USA:ACM Press,2020:150-159. [68] TANG J,WEN H,WANG K.Revisiting adversarially learned injection attacks against recommender systems[C]//Proceedings of the 14th ACM Conference on Recommender Systems.New York,USA:ACM Press,2020:318-327. [69] PATRO G K,CHAKRABORTY A,BANERJEE A,et al.Towards safety and sustainability:designing local recommendations for post-pandemic world[C]//Proceedings of the 14th ACM Conference on Recommender Systems.New York,USA:ACM Press,2020:358-367. [70] ZHANG Y,AI Q,CHEN X,et al.Joint representation learning for top-n recommendation with heterogeneous information sources[C]//Proceedings of 2017 ACM Conference on Information and Knowledge Management.New York,USA:ACM Press,2017:1449-1458. [71] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[EB/OL].[2020-12-10]. https://arxiv.org/abs/1706.03762. [72] SEO S,HUANG J,YANG H,et al.Interpretable convolutional neural networks with dual local and global attention for review rating prediction[C]//Proceedings of the 11th ACM Conference on Recommender Systems.New York,USA:ACM Press,2017:297-305. [73] TAY Y,LUU A T,HUI S C.Multi-pointer co-attention networks for recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York,USA:ACM Press,2018:2309-2318. [74] HU B,SHI C,ZHAO W X,et al.Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York,USA:ACM Press,2018:1531-1540. [75] KHAN M M,IBRAHIM R,GHANI I.Cross domain recommender systems:a systematic literature review[J].ACM Computing Surveys,2017,50(3):1-34. [76] FERNáNDEZ-TOBíAS I,CANTADOR I,KAMINSKAS M,et al.Cross-domain recommender systems:a survey of the state of the art[EB/OL].[2020-12-10].https://www.researchgate.net/publication/267227272. [77] PAN W,XIANG E W,LIU N N,et al.Transfer learning in collaborative filtering for sparsity reduction[C]//Proceedings of the 24th AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press:2010:230-235. [78] PEREIRA B L,UEDA A,PENHA G,et al.Online learning to rank for sequential music recommendation[C]//Proceedings of the 13th ACM Conference on Recommender Systems.New York,USA:ACM Press,2019:237-245. [79] COLLOBERT R,WESTON J.A unified architecture for natural language processing:deep neural networks with multitask learning[C]//Proceedings of the 25th IEEE International Conference on Machine Learning.Washington D.C.,USA:IEEE Press,2008:160-167. [80] SUTTON R S,BARTO A G.Reinforcement learning:an introduction[M].Cambridge,USA:MIT Press,2018. [81] YANG L,LIU B,LIN L,et al.Exploring clustering of bandits for online recommendation system[C]//Proceedings of the 14th ACM Conference on Recommender Systems.New York,USA:ACM Press,2020:120-129. [82] SANTANA M R O,MELO L C,CAMARGO F H F,et al.Contextual meta-bandit for recommender systems selection[C]//Proceedings of the 14th ACM Conference on Recommender Systems.New York,USA:ACM Press,2020:444-449. [83] NAJAFABADI M M,VILLANUSTRE F,KHOSHGOFTAAR T M,et al.Deep learning applications and challenges in big data analytics[J].Journal of Big Data,2015,2(1):1-21. |