[1] WANG S J, HU L, WANG Y, et al.Sequential recommender systems:challenges, progress and prospects[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.New York, USA:ACM Press, 2019:6332-6338. [2] 黄立威, 江碧涛, 吕守业, 等.基于深度学习的推荐系统研究综述[J].计算机学报, 2018, 41(7):1619-1647. HUANG L W, JIANG B T, LÜ S Y, et al.Survey on deep learning based recommender systems[J].Chinese Journal of Computers, 2018, 41(7):1619-1647.(in Chinese) [3] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al.Session-based recommendations with recurrent neural networks[EB/OL].[2021-12-10].https://arxiv.org/abs/1511.06939. [4] TAN Y K, XU X X, LIU Y.Improved recurrent neural networks for session-based recommendations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.New York, USA:ACM Press, 2016:17-22. [5] LI J, REN P J, CHEN Z M, et al.Neural attentive session-based recommendation[C]//Proceedings of 2017 Conference on Information and Knowledge Management.New York, USA:ACM Press, 2017:1419-1428. [6] TANG J X, WANG K.Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the 11th International Conference on Web Search and Data Mining.New York, USA:ACM Press, 2018:565-573. [7] YUAN F J, KARATZOGLOU A, ARAPAKIS I, et al.A simple convolutional generative network for next item recommendation[C]//Proceedings of the 12th International Conference on Web Search and Data Mining.New York, USA:ACM Press, 2019:582-590. [8] WU S, TANG Y Y, ZHU Y Q, et al.Session-based recommendation with graph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2019:346-353. [9] XU C F, ZHAO P P, LIU Y C, et al.Graph contextualized self-attention network for session-based recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.New York, USA:ACM Press, 2019:3940-3946. [10] 胡承佐, 王庆梅, 李迪超, 等.基于复杂结构信息的图神经网络序列推荐算法[J].计算机工程, 2022, 48(5):82-90, 97. HU C Z, WANG Q M, LI D C, et al.Sequence recommendation algorithm of graph neural networks based on complex structure information[J].Computer Engineering, 2022, 48(5):82-90, 97.(in Chinese) [11] WU S, SUN F, ZHANG W, et al.Graph neural networks in recommender systems:a survey[EB/OL].[2021-12-10].https://arxiv.org/abs/2011.02260v4. [12] YING R, HE R N, CHEN K F, et al.Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2018:974-983. [13] HE X N, DENG K, WANG X, et al.LightGCN:simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2020:639-648. [14] YU F, ZHU Y Q, LIU Q, et al.TAGNN:target attentive graph neural networks for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2020:1921-1924. [15] 吴玺煜, 陈启买, 刘海, 等.基于知识图谱表示学习的协同过滤推荐算法[J].计算机工程, 2018, 44(2):226-232, 263. WU X Y, CHEN Q M, LIU H, et al.Collaborative filtering recommendation algorithm based on representation learning of knowledge graph[J].Computer Engineering, 2018, 44(2):226-232, 263.(in Chinese) [16] WANG X, WANG D X, XU C R, et al.Explainable reasoning over knowledge graphs for recommendation[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2019:5329-5336. [17] WANG H W, ZHAO M, XIE X, et al.Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 19th World Wide Web Conference.New York, USA:ACM Press, 2019:3307-3313. [18] WANG X, HE X N, CAO Y X, et al.KGAT:knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2019:950-958. [19] 沈冬东, 汪海涛, 姜瑛, 等.一种融合知识图谱与长短期偏好的下一项推荐算法[J].小型微型计算机系统, 2020, 41(4):849-854. SHEN D D, WANG H T, JIANG Y, et al.Next recommendation algorithm that fuses knowledge graph with long-term and short-term preferences[J].Journal of Chinese Computer Systems, 2020, 41(4):849-854.(in Chinese) [20] WANG Q, XIONG Y, ZHU Y, et al.KASR:knowledge-aware sequential recommendation[C]//Proceedings of Asia-Pacific Web and Web-Age Information Management Joint International Conference on Web and Big Data.Berlin, Germany:Springer, 2020:493-508. [21] ZHU X, ZHAO P, XU J, et al.Knowledge graph attention network enhanced sequential recommendation[C]//Proceedings of Asia-Pacific Web and Web-Age Information Management Joint International Conference on Web and Big Data.Berlin, Germany:Springer, 2020:181-195. [22] LIN Y K, LIU Z Y, SUN M S, et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of AAAI Conference on Artificial Intelligence, Palo Alto, USA:AAAI Press, 2015:2181-2187. [23] LI Y J, TARLOW D, BROCKSCHMIDT M, et al.Gated graph sequence neural networks[EB/OL].[2021-12-10].https://arxiv.org/abs/1511.05493. [24] ZHANG M Q, WU S, GAO M, et al.Personalized graph neural networks with attention mechanism for session-aware recommendation[J].IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8):3946-3957. [25] KANG W C, MCAULEY J.Self-attentive sequential recommendation[C]//Proceedings of IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2018:197-206. [26] HE X, LIAO L, ZHANG H, et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.New York, USA:ACM Press, 2017:173-182. |