[1] Ranft B , Stiller C . The Role of Machine Vision for Intelligent
Vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2016:1-1.
[2] Liang Minjian. Research on key technologies of visual perception of
intelligent vehicle driving Environment [D]. Chang 'a University,2017
梁敏健. 智能车行车环境视觉感知关键技术研究[D].长安大
学,2017.
[3] Luca Cagliero, Lorenzo Canale, Laura Farinetti, "VISA: A Supervised
Approach to Indexing Video Lectures with Semantic Annotations",
Computer Software and Applications Conference (COMPSAC) 2019
IEEE 43rd Annual, vol. 1, pp. 226-235, 2019.
[4] Liu X . A geographic opportunistic forwarding strategy for vehicular
named data networking [M]// Intelligent Distributed Computing IX.
Springer International Publishing, 2016.
[5] L. Shang, X. Wang, P. Wang and N. Ngoc Van, "Computation
Offloading Management in Vehicular Edge Network under Imperfect
CSI," 2019 IEEE 2nd International Conference on Information
Communication and Signal Processing (ICICSP), Weihai, China,
2019, pp. 199-203, doi: 10.1109/ ICICSP 48821. 2019. 8958488.
[6] Gu B , Zhou Z . Task Offloading in Vehicular Mobile Edge
Computing: A Matching-Theoretic Framework[J]. Vehicular
Technology Magazine, IEEE, 2019.
[7] Zhang K, Zhu Y, Ling S, et al. Deep learning embowered task
off-Roading for mobile edge computing in urban information [J].
IEEE Internet of Things Jordan, 2019, 6(5): 7635-7647.
[8] Cao H, Cai J. Distributed multiuser computation offlooding for
Cludlet-based mobile computing: Agame-theoretic machine Leading
approach [J]. IEEE Transactions on Vehicular Technology -Gy, 2017,
67(1): 752-764
[9] Lv Ling-Ling, Yang Zhi-Ping, Zhang Lei, et al. Control theory based
task of flooding stratage of mobile edge computing [J]. Control and
decision, 2019, 34(11): 2366-2374.
[10] Huang X, Xu K, Lai C, et al. Energy-efficient of-roading
decision-macing for mobile edge computing in vehicular network
[J].EURASIP Journal on Wireles communications and
Networking,2020, 2020(1): 35, doi: 10. 1186/s13638-2020-1652-5.
[11] Haitao ZHAO, Yinyang ZHU, Yi DING, Hongbo ZHU. Research on
Content-aware Classification Offloading Algorithm Based on Mobile
Edge Calculation in the Internet of Vehicles[J]. Journal of Electronics
and Information Technology, 2020, 42(1): 20-27. doi:
10.11999/JEIT190594
赵海涛, 朱银阳, 丁仪, 朱洪波. 车联网中基于移动边缘计算的内
容感知分类卸载算法研究[J]. 电子与信息学报, 2020, 42(1): 20-27.
doi: 10.11999/JEIT190594
[12] Luo Guiyang, Yuan Quan, Zhou Haibo, et al. Cooperative vehicular
content distribution in edge computing assisted 5G-VANET[J]. China
Communications , 2018, 15(7): 1–17. doi: 10.1109/CC.2018.8424578.
[13] TAO Xiaoyi, OTA K, DONG Mianxiong, et al. Performance
guaranteed computation offloading for mobile-edge cloud
computing[J]. IEEE Wireless Communications Letters,2017, 6(6):
774–777. doi: 10.1109/LWC.2017.2740927.
[14] Machardy Z , Khan A , Obana K , et al. V2X Access Technologies:
Regulation, Research, and Remaining Challenges[J]. IEEE
Communications Surveys & Tutorials, 2018, PP(3):1-1.
[15] Sze V , Chen Y H , Yang T J , et al. Efficient Processing of Deep
Neural Networks: A Tutorial and Survey[J]. Proceedings of the IEEE,
2017, 105(12): 2295 - 2329.
[16] Chen Y H , Krishna T , Emer J S , et al. Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural
Networks[C]// Solid-state Circuits Conference. IEEE, 2016.
[17] Ju M , Jung H , Che H . A Performance Analysis Methodology for
Multicore, Multithreaded Processors[J]. IEEE Transactions on
Computers, 2014, 63(2):276-289.
[18] Zhang Haibo, Luan Qiu, Zhu Jiang, et al. Task Unloading and
Resource allocation based on Moving Edge Computing in
heterogeneous vehicle networks [J]. Journal of Internet of Things,
2018, 2(3): 36 -- 43. Doi :10.11959/ J.issn.2096-3750. 2018.00062.
张海波, 栾秋季, 朱江, 等. 车辆异构网中基于移动边缘计算的任
务 卸 载 与 资 源 分 配 [J]. 物 联 网 学 报 , 2018, 2(3): 36–43.
doi:10.11959/ j.issn. 2096-3750. 2018 . 00062.
[19] Sze V , Chen Y H , Yang T J , et al. Efficient Processing of Deep
Neural Networks: A Tutorial and Survey[J]. Proceedings of the IEEE,
2017, 105(12): 2295 - 2329.
[20] Mao Y, Zhang J, Letaief KB. Dynamic computation offloading for
Mobile-edge computing with energe harvesting procedures [J]. IEEE
Journal on Selected Areas in communications, 2016, 34 (12):
3590-3605.
[21] Huang X , Xu K , Lai C , et al. Energy-efficient offloading
decision-making for mobile edge computing in vehicular networks[J].
EURASIP Journal on Wireless Communications and Networking,
2020, 2020(1).
[22] W. Huang and A. Ribeiro, "Hierarchical Clustering Given Confidence
Intervals of Metric Distances," in IEEE Transactions on SignalProcessing, vol. 66, no. 10, pp. 2600-2615, 15 May15, 2018, doi:
10.1109/TSP.2018.2813322.
[23] G M Chaslot, M H Winands and H J. Herik, "Parallel Monte-Carlo
Tree Search[C]", International Conference on Computers and Games,
pp. 60-71, 2008.
[24] E. Lim, S. Ahn and W. Choi, "Accelerating training of DNN in
distributed machine learning system with shared memory," 2017
International Conference on Information and Communication
Technology Convergence (ICTC), Jeju, 2017, pp. 1209-1212, doi:
10.1109/ICTC.2017.8190900.
[25] Y. Huang, R. Song, K. Xu, X. Ye, C. Li and X. Chen, "Deep Learning
Based Inverse Scattering with Structural Similarity Loss Functions,"
in IEEE Sensors Journal, doi: 10.1109/JSEN.2020.3030321.
[26] Xuwei Xue, Fulong Yan, Bitao Pan, Nicola Calabretta, "Performance
Assessment of OPSquare Data Center Network with Elastic
Allocation of WDM Transceivers", Transparent Optical Networks
(ICTON) 2018 20th International Conference on, pp. 1-4, 2018.
[27] H. GU, Y. DONG and T. CAO. Data Driven QoE - QoS Association
Modeling of Conversational Video[C]// 2019 IEEE Global
Conference on Signal and Information Processing (GlobalSIP),
Ottawa, ON, Canada, 2019: 1-4. ETSI TS 102 637-3: "Intelligent
Transport Systems (ITS);Vehicular.
[28] MIETTINEN A P , NURMINEN J K. Energy efficiency of mobile
clients in cloud computing[C]//USENIX Conference on Hot Topics in
Cloud Computing. USENIX Association, 2010: 1-7.
[29] S. Zhang, Y. Xie, J. Wan, H. Xia, S. Z. Li and G. Guo, "WiderPerson:
A Diverse Dataset for Dense Pedestrian Detection in the Wild," in
IEEE Transactions on Multimedia, vol. 22, no. 2, pp. 380-393, Feb.
2020, doi: 10.1109/TMM.2019.2929005.
[30] Q. Liu, Z. Su and Y. Hui, "Computation Offloading Scheme to
Improve QoE in Vehicular Networks with Mobile Edge Computing,"
2018 10th International Conference on Wireless Communications and
Signal Processing (WCSP), Hangzhou, 2018, pp. 1-5, doi:
10.1109/WCSP.2018.8555879.
[31] G. Raja, A. Ganapathisubramaniyan, S. Anbalagan, S. B. M. Baskaran,
K. Raja and A. K. Bashir, "Intelligent Reward-Based Data Offloading
in Next-Generation Vehicular Networks," in IEEE Internet of Things
Journal, vol. 7, no. 5, pp. 3747-3758, May 2020, doi:
10.1109/JIOT.2020.2974631.
|