计算机工程 ›› 2009, Vol. 35 ›› Issue (11): 196-198.doi: 10.3969/j.issn.1000-3428.2009.11.067

• 人工智能及识别技术 • 上一篇    下一篇

改进邻居集合的个性化推荐算法

刘枚莲,丛晓琪,杨怀珍   

  1. (桂林电子科技大学管理学院,桂林 541004)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2009-06-05 发布日期:2009-06-05

Enhanced Neighbor Set Personalized Recommendation Algorithm

LIU Mei-lian, CONG Xiao-qi, YANG Huai-zhen   

  1. (Department of Management, Guilin University of Electronic Technology, Guilin 541004)
  • Received:1900-01-01 Revised:1900-01-01 Online:2009-06-05 Published:2009-06-05

摘要: 协同过滤算法是目前个性化推荐系统中应用最成功的推荐算法之一,但传统的算法没有考虑在不同时间段内寻找最近邻居问题,导致寻找的邻居集合可能不是最近邻居集合。针对此问题,提出一种改进邻居集合的个性化推荐算法。该算法赋予每项评分一个按时间逐步递减的权重,利用加权后的评分寻找目标用户的最近邻居。实验表明,改进的算法提高了推荐系统的推荐质量。

关键词: 协同过滤, 邻居用户, 时间权重

Abstract: Collaborative filtering algorithm is one of the most successful technology for building personalized recommendation system to date. But traditional algorithm does not consider finding the nearest neighbors in different time periods, leading to the neighbors may not be the nearest neighbor set. For this reason, an enhanced neighbor set personalized recommendation algorithm is proposed. The rating is given a weight by a time gradually decreasing which is weighted to search nearest neighbor. The experimental results show that the presented algorithm can improve recommendation quality of the collaborative filtering recommendation algorithm.

Key words: collaborative filtering, neighbor user, time weight

中图分类号: