[1] YUE S,LARSON M,HANJALIC A.Collaborative filtering beyond the user-item matrix:a survey of the state of the art and future challenges[J].ACM Computing Surveys,2014,47(1):1-45. [2] ZHANG Fuguo.Survey of online social network based personalized recommendation[J].Journal of Chinese Computer Systems,2014,35(7):1470-1476.(in Chinese)张富国.基于社交网络的个性化推荐技术[J].小型微型计算机系统,2014,35(7):1470-1476. [3] SARWAR B,KARYPIS G,KONSTAN J,et al.Application of dimensionality reduction in recommender system-a case study[EB/OL].[2019-10-05].https://wenku.baidu.com/view/056ed4cd05087632311212d9.html. [4] KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37. [5] YU Hong,LI Junhua.Algorithm to solve the cold-start problem in new item recommendations[J].Journal of Software,2015,26(6):1395-1408.(in Chinese)于洪,李俊华.一种解决新项目冷启动问题的推荐算法[J].软件学报,2015,26(6):1395-1408. [6] WU Xiyu,CHEN Qimai,LIU Hai,et al.Collaborative filtering recommendation algorithm based on representation learning of knowledge graph[J].Computer Engineering,2018,44(2):226-232,263.(in Chinese)吴玺煜,陈启买,刘海,等.基于知识图谱表示学习的协同过滤推荐算法[J].计算机工程,2018,44(2):226-232,263. [7] SINGH A P,GORDON G J.Relational learning via collective matrix factorization[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,ACM Press,2008:650-658. [8] CHEN Xiaoxia,LU Jing.Dynamic adaptive recommendation algorithm fusing multiple data sources[J].Computer Engineering,2018,44(9):64-69.(in Chinese)陈晓霞,卢菁.融合多数据源的动态自适应推荐算法[J].计算机工程,2018,44(9):64-69. [9] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507. [10] HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554. [11] SALAKHUTDINOV R,MNIH A,HINTON G.Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning.New York,USA:ACM Press,2007:791-798. [12] HE Xiangnan,LIAO Lizi,ZHANG Hanwang,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.New York,USA:ACM Press,2017:173-182. [13] SEDHAIN S,MENON A K,SANNER S,et al.AutoRec:autoencoders meet collaborative filtering[C]//Proceedings of the 24th International Conference on World Wide Web.New York,USA:ACM Press,2015:111-112. [14] ZHANG Shuai,YAO Lina,XU Xiwei.AutoSVD++:an efficient hybrid collaborative filtering model via contractive auto-encoders[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2017:957-960. [15] ZHANG Shuai,YAO Lina,XU Xiwei,et al.Hybrid collaborative recommendation via semi-autoencoder[C]//Proceedings of International Conference on Neural Information Processing.Berlin,Germany:Springer,2017:185-193. [16] LI S,KAWALE J,FU Y.Deep collaborative filtering via marginalized denoising auto-encoder[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.New York,USA:ACM Press,2015:811-820. [17] BENNETT J,LANNING S.The Netflix prize[C]//Proceedings of KDD Cup and Workshop in Conjunction with KDD.New York,USA:ACM Press,2007:35-42. [18] PATEREK A.Improving regularized singular value decom-position for collaborative filtering[EB/OL].[2019-10-05].https://blog.csdn.net/qq_35771020/article/details/87993625. [19] MNIH A,SALAKHUTDINOV R R.Probabilistic matrix factorization[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2008:1257-1264. [20] KOREN Y.Factorization meets the neighborhood:a multifaceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2008:426-434. |