[1] WANG Lichai,MENG Xiangwu,ZHANG Yujie.Context-aware recommender systems[J].Journal of Software,2012,23(1):1-20.(in Chinese)王立才,孟祥武,张玉洁.上下文感知推荐系统[J].软件学报,2012,23(1):1-20. [2] BREESE J S,HECKERMAN D,KADIE C.Empirical analysis of predictive algorithms for collaborative filtering[J].Uncertainty in Artificial Intelligence,2013,98(7):43-52. [3] LU Z,DOU Z,LIAN J,et al.Content-based collaborative filtering for news topic recommendation[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press,2015:217-223. [4] SARWAR B,KARYPIS G,KONSTANJ,et al.Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web.New York,USA:ACM Press,2001:285-295. [5] MOBASHER B,BURKE R D,SANDVIG J J.Model-based collaborative filtering as a defense against profile injection attacks[C]//Proceedings of National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference.[S.l.]:DBLP,2006:59-63. [6] POPESCUL A,UNGAR L,PENNOCK D,et al.Probabilistic models for unified collaborative and content-based recom-mendation in sparse-data environments[EB/OL].[2019-03-20].https://arxiv.org/abs/1301.2303. [7] POLATO M,AIOLLI F.Exploiting sparsity to build efficient kernel based collaborative filtering for top-N item recommendation[J].Neurocomputing,2017,268:17-26. [8] CHRISTAKOPOULOU E,KARYPIS G.Local item-item models for top-N recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems.New York,USA:ACM Press,2016:25-39. [9] PATRA B K,LAUNONEN R,OLLIKAINEN V,et al.A new similarity measure using Bhattacharyya coefficient for collaborative filtering in sparse data[J].Knowledge-Based Systems,2015,82(2):163-177. [10] SURYAKAN T,MAHARA T.A new similarity measure based on mean measure of divergence for collaborative filtering in sparse environment[J].Procedia Computer Science,2016,89:450-456. [11] ZHANG Haixia,LÜ Zhen,ZHANG Chuanting,et al.An improved collaborative filtering recommendation algorithm with weighted heterogeneous information[J].Journal of University of Electronic Science and Technology of China,2018,47(1):112-116,152.(in Chinese)张海霞,吕振,张传亭,等.一种引入加权异构信息的改进协同过滤推荐算法[J].电子科技大学学报,2018,47(1):112-116,152. [12] YAO Yuan,TONG Hanghang,YAN Guo,et al.Dual-regularized one-class collaborative filtering with implicit feedback[J].World Wide Web,2019,22(3):1099-1129. [13] WANG Zongwu.A collaborative filtering algorithm based on clustering of users trust[J].Computer and Modernization,2013,1(9):50-53.(in Chinese)王宗武.基于信任用户联合聚类的协同过滤算法[J].计算机与现代化,2013,1(9):50-53. [14] WU Xiyu,CHEN Qimai,LIU Hai,et al.Collaborative filtering recommendation algorithm based on representation learning of knowledge graph[J].Computer Engineering,2018,44(2):226-232.(in Chinese)吴玺煜,陈启买,刘海,等.基于知识图谱表示学习的协同过滤推荐算法[J].计算机工程,2018,44(2):226-232. [15] LIU J,YONG W,YAN F.An improved collaborative filtering recommendation algorithm[J].Computer Science,2016,32(9):3019-3028. [16] LIU Yi,FENG Jun,WEI Tongtong,et al.An improved collaborative filtering recommendation algorithm[J].Computer and Modernization,2017,5(1):1-4.(in Chinese)刘艺,冯钧,魏童童,等.一种改进的协同过滤推荐算法[J].计算机与现代化,2017,5(1):1-4. [17] LU Jiale,LI Weixiang,MAO Xiangyu.Recommendation algorithm based on fuzzy time series classification and weighted similarity[J].Computer Engineering,2018,44(6):156-161.(in Chinese)卢佳乐,李为相,毛祥宇.基于模糊时序分类与加权相似度的推荐算法[J].计算机工程,2018,44(6):156-161. [18] ZHONG Chuan,CHEN Jun.Improved collaborative filtering recommendation algorithm based on exact euclidean locality sensitive hashing[J].Computer Engineering,2017,43(2):74-78.(in Chinese)钟川,陈军.基于精确欧氏局部敏感哈希的改进协同过滤推荐算法[J].计算机工程,2017,43(2):74-78. [19] GREG L.What is a good recommendation algorithm?[EB/OL].[2019-03-20].https://cacm.acm.org/blogs/blog-cacm/22925-what-is-a-good-recommendation-algorithm/fulltext. [20] XIANG Liang.Practice of recommendation system[M].Beijing:Posts and Telecom Press,2012.(in Chinese)项亮.推荐系统实践[M].北京:人民邮电出版社,2012. |