Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2006, Vol. 32 ›› Issue (22): 189-191. doi: 10.3969/j.issn.1000-3428.2006.22.068

• Artificial Intelligence and Recognition Technology • Previous Articles     Next Articles

Algorithm of Moving Point Targets Detection from Gauss Stationary Random Field

ZHANG Wenchao1, WANG Yanfei1, CHEN Hexin2   

  1. (1. Lab 7, Institute of Electronics, Chinese Academic of Science, Beijing 100080; 2. College of Communication, Jinlin University, Changchun 130025)
  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-20 Published:2006-10-20

高斯平稳随机场中运动小目标识别算法

张文超1,王岩飞1,陈贺新2   

  1. (1. 中国科学院电子所七室,北京100080;2. 吉林大学通信学院,长春130025)

Abstract: This paper proposes an algorithm of moving point target detection from Gauss stationary random field. It trains the images from the stationary random field and acquires the probability mean and variance by MLE , then does probability threshold process to every frame according to 3-σ principle and accumulates the difference of multiple frames. According to the depth of the Bi-direction chain in the sum frame, it does track detection. The experimental results show that the method is effective.

Key words: Image series, Stationary random field, Gauss process, Maximum likelihood estimation, Bi-direction chain

摘要: 提出了高斯平稳随机场中运动小目标的识别算法,对平稳随机场的图像序列进行训练,由最大似然估计法估计出各对应点处的概率均值和方差,根据3-σ原则对运动图像序列的各帧进行概率域值化处理,对图像序列进行差分多帧叠加,在叠加帧上根据双向链表,由链表的深度进行轨迹判决,试验证明该方法的有效性。

关键词: 图像序列, 平稳随机场, 高斯过程, 最大似然估计, 双向链表