[1]王盛玉,曾碧卿,胡翩翩.基于卷积神经网络参数优化的中文情感分析[J].计算机工程,2017,43(8):200-207,214.
[2]BENGIO Y,SCHWENK H,SENCAL J S,et al.Neural probabilistic language models[M].In Innovations in Machine Learning.Berlin,Germany:Springer,2006:137-186.
[3]COLLOBERT R,WESTON J.A unified architecture for natural language processing:deep neural networks with multitask learning[C]//Proceedings of the 25th International Conference on Machine learning.New York,USA:ACM Press,2008:160-167.
[4]GAL Y,CHEN Y,ZOUBIN G.Latent Gaussian process for distribution estimation of multivariate categorical data[EB/OL].[2017-11-18].https://arxiv.org/pdf/150 3.02182.pdf.
[5]KHAN M E,MOHAMED S,MARLIN B R,et al.A stick-breaking likelihood for categorical data analysis with latent Gaussian models[EB/OL].[2017-11-18].https://www.shakirm.com/papers/catLGM-AIstats 20 12.pdf.
[6]何志昆,刘光斌,赵曦晶,等.高斯过程回归方法综述[J].控制与决策,2013,28(8):1121-1129,1137.
[7]RASMUSSEN C E,WILLIAM K I.Gaussian process for machine learning[EB/OL].[2017-11-18].http://www.gaussianprocess.org/gpml/.
[8]KO J,FOX D.GP-Bayes filters:Bayesian filtering using Gaussian process prediction and observation models[C]//Proceedings of IEEE/RSJ Intelligent Robots and Systems.Washington D.C.,USA:IEEE Press,2008:3471-3476.
[9]DEISENROTH M P,RASMUSSEN C E.PILCO:a model-based and data-efficient approach to policy search[C]//Proceedings of the 28th International Conference on Machine Learning.[S.l.]:Omnipress,2011:465-472.
[10]CRESSIE N,WIKLE K.Statistics for spatio-temporal data[EB/OL].[2017-11-18].https://www.wiley.com/en-us/Statistics+for+Spatio+Temporal+Data-p-9780471692744.
[11]王鑫,李红丽.台风最大风速预测的高斯过程回归模型[J].计算机应用研究,2015,32(1):59-62.
[12]BRIOL F X,OATES C J,GIROLAMI M,et al.Probabilistic integration:a role for statisticians in numerical analysis?[EB/OL].[2017-11-18].https://arxiv.org/pdf/1512.00933v5.pdf.
[13]GUESTRIN C,KRAUSE A,SINGH A P.Near-optimal sensor placements in Gaussian processes[C]//Proceedings of the 22nd International Conference on Machine Learning.New York,USA:ACM Press,2005:265-272.
[14]孙晓燕,陈姗姗,巩敦卫,等.基于区间适应值交互式遗传算法的加权多输出高斯过程代理模型[J].自动化学报,2014,40(2):172-184.
[15]SNOEK J,LAROCHELLE H,ADAMS R P.Practical bayesian optimization of machine learning algorithms[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems[S.l.]:Curran Associates Inc.,2012:2951-2959.
[16]REZENDE D J,MOHAMED S,WIERSTRA D.Stochastic back propagation and approximate inference in deep generative models[J].Pattern Recognition and Machine Learning,2014,32(2):1278-1286.
[17]GHAHRAMANI Z.Probabilistic machine learning and artificial intelligence[J].Nature,2015,521:452-459.
[18]DAMIANOU A C,LAWRENCE N D.Deep Gaussian processes[EB/OL].[2017-11-18].https://core.ac.uk/download/pdf/46564399.pdf.
[19]WILSON A G,HU Z,SALAKHUTDINOV R,et al.Deep kernel learning[EB/OL].[2017-11-18].https://arxiv.org/pdf/1511.02222.pdf.
[20]DURRANDE N,GINSBOURGER D,ROUSTANT O.Additive kernels for Gaussian process modeling[EB/OL].[2017-11-18].https://arxiv.org/pdf/1103.4023.pdf.
[21]DAVID D,JAMES R L,ROGER G,et al.Structure discovery in nonparametric regression through compositional kernel search[EB/OL].[2017-11-18].http://www.cs.toronto.edu/~rgrosse/icml2013-gp.pdf.
[22]HENSMAN J,LAWRENCE N D.Nested variational compression in deep Gaussian processes[EB/OL].[2017-11-18].https://arxiv.org/pdf/1412.1370.pdf.
[23]VAFA K.Training deep Gaussian processes with sampling[EB/OL].[2017-11-18].http://approxi mateinference.org/accepted/Vafa2016.pdf.
[24]WANG Y,BRUBAKER M,CHAIB-DRAA B,et al.Sequential inference for deep Gaussian process[EB/OL].[2017-11-18].http://proceedings.mlr.press/v51/wang 16c.pdf.
[25]BUI T D,HERNNDEZ-LOBATO D,LI Y,et al.Deep Gaussian processes for regression using approximate expectation propagation[EB/OL].[2017-11-18].http://proceedings.mlr.press/v48/bui16.pdf.
[26]DAI Z,DAMIANOU A,GONZLEZ J,et al.Variational auto-encoded deep Gaussian processes[EB/OL].[2017-11-18].https://arxiv.org/pdf/1511.06455.pdf.
[27]DAMIANOU A D,TITSIAS M K,LAWRENCE N D.Variational Gaussian process dynamical systems[EB/OL].[2017-11-18].http://papers.nips.cc/paper/4330-variational-gaussian-process-dynamical-systems.pdf.
[28]CUTAJAR K,BONILLA E V,MICHIARDI P,et al.Practical learning of deep Gaussian processes via random fourier features[EB/OL].[2017-11-18].https://pdfs.semanticscholar.org/bafa/7e2d586e7bfe77d9a55ac1cff4 eb2f6ff292.pdf.
[29]HUGH S,MARC D.Doubly stochastic variational inference for deep Gaussian processes[EB/OL].[2017-11-18].https://arxiv.org/pdf/1705.08933.pdf.
[30]TITSIAS M K.Variational learning of inducing variables in sparse Gaussian processes[EB/OL].[2017-11-18].http://proceedings.mlr.press/v5/titsias09a/titsias09a.pdf.
[31]BLEI D M,KUCUKELBIR A,MCAULIFFE J D.Variational inference:a review for statisticians[EB/OL].[2017-11-18].https://arxiv.org/pdf/1601.00670.pdf.
[32]JOHN D,ELAD H,YORAM S.Adaptive subgradient methods for online learning and stochastic optimiza-tion[J].Journal of Machine Learning Research,2011,12:2121-2159.
[33]TIELEMAN T,HINTON G.Lecture 6.5- rmsprop,COURSERA:neural networks for machine learning[EB/OL].[2017-11-18].http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
[34]TOM S,IOANNIS A,DAVID S.Unit tests for stochastic optimization[EB/OL].[2017-11-18].https://arxiv.org/pdf/1312.6055.pdf.
[35]Perplexity[G/OL].[2017-11-18].https://en.wiki pedia.org/wiki/Perplexity.
[36]Tensorflow[EB/OL].[2017-11-18].https://tenso rflow.google.cn/.
[37]MATTHEWS A G D G,MARK V D W,NICKSON T,et al.GPflow:a gaussian process library using tensorflow[EB/OL].[2017-11-18].http://adsabs.harvard.edu/abs/2016arXiv161008733M.
[38]Handwritten digits[DB/OL].[2017-11-18].https://cs.nyu.edu/~roweis/data.html.
[39]MATJAZ Z,MILAN S.Breast cancer data set[DB/OL].[2017-11-18].http://archive.ics.uci.edu/ml/datasets/Breast+Cancer. |