[1] DEMIR B, BRUZZONE L.Hashing-based scalable remote sensing image search and retrieval in large archives[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2):892-904. [2] DEMIR B, BRUZZONE L.A novel active learning method in relevance feedback for content-based remote sensing image retrieval[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2323-2334. [3] LI Y, MA J, ZHANG Y.Image retrieval from remote sensing big data:a survey[J].Information Fusion, 2021, 67:94-115. [4] TONG X Y, XIA G S, HU F, et al.Exploiting deep features for remote sensing image retrieval:a systematic investigation[J].IEEE Transactions on Big Data, 2020, 6(3):507-521. [5] DUBEY S R.A decade survey of content based image retrieval using deep learning[J].IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(5):2687-2704. [6] SHEN F M, SHEN C H, LIU W, et al.Supervised discrete hashing[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:37-45. [7] LIONG V E, LU J W, WANG G, et al.Deep hashing for compact binary codes learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:2475-2483. [8] ANDONI A, INDYK P.Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions[C]//Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science.Washington D.C., USA:IEEE Press, 2006:459-468. [9] WEISS Y, TORRALBA A, FERGUS R.Spectral hashing[J].Advances in Neural Information Processing Systems, 2008, 21(12):1753-1760. [10] GONG Y C, LAZEBNIK S, GORDO A, et al.Iterative quantization:a procrustean approach to learning binary codes for large-scale image retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12):2916-2929. [11] LIN K, LU J W, CHEN C S, et al.Learning compact binary descriptors with unsupervised deep neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1183-1192. [12] DIZAJI K G, ZHENG F, NOURABADI N S, et al.Unsupervised deep generative adversarial hashing network[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3664-3673. [13] VENKATESWARA H, EUSEBIO J, CHAKRABORTY S, et al.Deep hashing network for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:5385-5394. [14] YANG E K, DENG C, LIU T L, et al.Semantic structure-based unsupervised deep hashing[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.New York, USA:ACM Press, 2018:1064-1070. [15] TU R C, MAO X L, WEI W.MLS3RDUH:deep unsupervised hashing via manifold based local semantic similarity structure reconstructing[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence.New York, USA:ACM Press, 2020:3466-3472. [16] SHEN F M, XU Y, LIU L, et al.Unsupervised deep hashing with similarity-adaptive and discrete optimization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12):3034-3044. [17] LIU Z, LIN Y T, CAO Y, et al.Swin Transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2021:9992-10002. [18] SONG J K, HE T, GAO L L, et al.Binary generative adversarial networks for image retrieval[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1):15-22. [19] ZHANG W Q, WU D Y, ZHOU Y, et al.Deep unsupervised hybrid-similarity hadamard hashing[C]//Proceedings of the 28th ACM International Conference on Multimedia.New York, USA:ACM Press, 2020:3274-3282. [20] SUN Y, YE Y, LI X, et al.Unsupervised deep hashing through learning soft pseudo label for remote sensing image retrieval[J].Knowledge-Based Systems, 2022, 239:107807. [21] WANG Z, SIMONCELLI E P, BOVIK A C.Multiscale structural similarity for image quality assessment[C]//Proceedings of the 37th Asilomar Conference on Signals, Systems & Computers.Washington D.C., USA:IEEE Press, 2003:1398-1402. [22] PHADIKAR B S, PHADIKAR A, THAKUR S S.A comprehensive assessment of content-based image retrieval using selected full reference image quality assessment algorithms[J].Multimedia Tools and Applications, 2021, 80(10):15619-15646. [23] HELBER P, BISCHKE B, DENGEL A, et al.EuroSAT:a novel dataset and deep learning benchmark for land use and land cover classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7):2217-2226. [24] ZHOU W X.PatternNet:a benchmark dataset for performance evaluation of remote sensing image retrieval[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145:197-209. [25] PASZKE A, GROSS S, MASSA F, et al.PyTorch:an imperative style, high-performance deep learning library[EB/OL].[2022-04-05].https://arxiv.org/pdf/1912.01703.pdf. [26] KINGMA D P, BA J.Adam:a method for stochastic optimization[EB/OL].[2022-04-05].https://arxiv.org/abs/1412.6980. [27] LI Y Q, VAN G J.Deep unsupervised image hashing by maximizing bit entropy[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(3):2002-2010. |