1 |
蒲恬, 张子夜, 彭真明. 保持自然度的非均匀光照图像增强的Retinex算法. 数据采集与处理, 2021, 36 (1): 76- 84.
URL
|
|
PU T, ZHANG Z Y, PENG Z M. Enhancing uneven lighting images with naturalness preserved Retinex algorithm. Journal of Data Acquisition and Processing, 2021, 36 (1): 76- 84.
URL
|
2 |
郭继昌, 岳惠惠, 张怡, 等. 图像增强对显著性目标检测的影响研究. 中国图象图形学报, 2022, 27 (7): 2129- 2147.
URL
|
|
GUO J C, YUE H H, ZHANG Y, et al. The analysis of image enhancement on salient object detection. Journal of Image and Graphics, 2022, 27 (7): 2129- 2147.
URL
|
3 |
PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 1987, 39 (3): 355- 368.
doi: 10.1016/S0734-189X(87)80186-X
|
4 |
CHANG Y K, JUNG C, KE P, et al. Automatic contrast-limited adaptive histogram equalization with dual gamma correction. IEEE Access, 2018, 6, 11782- 11792.
doi: 10.1109/ACCESS.2018.2797872
|
5 |
CELIK T, TJAHJADI T. Contextual and variational contrast enhancement. IEEE Transactions on Image Processing, 2011, 20 (12): 3431- 3441.
doi: 10.1109/TIP.2011.2157513
|
6 |
LEE C, KIM C S. Contrast enhancement based on layered difference representation of 2D histograms. IEEE Transactions on Image Processing, 2013, 22 (12): 5372- 5384.
doi: 10.1109/TIP.2013.2284059
|
7 |
AL-AMEEN Z. Nighttime image enhancement using a new illumination boost algorithm. IET Image Processing, 2019, 13 (8): 1314- 1320.
doi: 10.1049/iet-ipr.2018.6585
|
8 |
LIU S G, ZHANG Y. Detail-preserving underexposed image enhancement via optimal weighted multi-exposure fusion. IEEE Transactions on Consumer Electronics, 2019, 65 (3): 303- 311.
doi: 10.1109/TCE.2019.2893644
|
9 |
LAND E H, MCCANN J J. Lightness and Retinex theory. Journal of the Optical Society of America, 1971, 61 (1): 1- 11.
doi: 10.1364/JOSA.61.000001
|
10 |
FU X Y, ZENG D L, HUANG Y, et al. A weighted variational model for simultaneous reflectance and illumination estimation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2782-2790.
|
11 |
REN X T, YANG W H, CHENG W H, et al. LR3M: robust low-light enhancement via low-rank regularized Retinex model. IEEE Transactions on Image Processing, 2020, 29, 5862- 5876.
doi: 10.1109/TIP.2020.2984098
|
12 |
韩梦妍, 李良荣, 蒋凯. 基于光照图估计的Retinex低照度图像增强算法. 计算机工程, 2021, 47 (10): 201- 206.
URL
|
|
HAN M Y, LI L R, JIANG K. Retinex low-illumination image enhancement algorithm based on light image estimation. Computer Engineering, 2021, 47 (10): 201- 206.
URL
|
13 |
LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recognition, 2017, 61, 650- 662.
doi: 10.1016/j.patcog.2016.06.008
|
14 |
|
15 |
LIM S, KIM W. DSLR: deep stacked Laplacian restorer for low-light image enhancement. IEEE Transactions on Multimedia, 2021, 23, 4272- 4284.
doi: 10.1109/TMM.2020.3039361
|
16 |
徐超越, 余映, 何鹏浩, 等. 基于U-Net的多尺度低照度图像增强网络. 计算机工程, 2022, 48 (8): 215- 223.
URL
|
|
XU C Y, YU Y, HE P H, et al. Multi-scale low-light image enhancement network based on U-net. Computer Engineering, 2022, 48 (8): 215- 223.
URL
|
17 |
|
18 |
JIANG Y F, GONG X Y, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision. IEEE Transactions on Image Processing, 2021, 30, 2340- 2349.
doi: 10.1109/TIP.2021.3051462
|
19 |
GUO C L, LI C Y, GUO J C, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1777-1786.
|
20 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023.
doi: 10.1109/TPAMI.2019.2913372
|
21 |
HUANG S C, CHENG F C, CHIU Y S. Efficient contrast enhancement using adaptive Gamma correction with weighting distribution. IEEE Transactions on Image Processing, 2013, 22 (3): 1032- 1041.
doi: 10.1109/TIP.2012.2226047
|
22 |
LIU R S, MA L, ZHANG J A, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 10556-10565.
|
23 |
CAI J R, GU S H, ZHANG L. Learning a deep single image contrast enhancer from multi-exposure images. IEEE Transactions on Image Processing, 2018, 27 (4): 2049- 2062.
|
24 |
VONIKAKIS V, ANDREADIS I, GASTERATOS A. Fast centre-surround contrast modification. IET Image Processing, 2008, 2 (1): 19- 34.
|
25 |
WANG S H, ZHENG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Transactions on Image Processing, 2013, 22 (9): 3538- 3548.
|
26 |
WANG W J, WEI C, YANG W H, et al. GLADNet: low-light enhancement network with global awareness[C]//Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition. Washington D. C., USA: IEEE Press, 2018: 751-755.
|
27 |
GU K, WANG S Q, ZHAI G T, et al. Blind quality assessment of tone-mapped images via analysis of information, naturalness, and structure. IEEE Transactions on Multimedia, 2016, 18 (3): 432- 443.
|
28 |
CHEN X Q, ZHANG Q Y, LIN M H, et al. No-reference color image quality assessment: from entropy to perceptual quality. EURASIP Journal on Image and Video Processing, 2019, (1): 1- 14.
|
29 |
TEMEL D, PRABHUSHANKAR M, ALREGIB G. UNIQUE: unsupervised image quality estimation. IEEE Signal Processing Letters, 2016, 23 (10): 1414- 1418.
|