作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2019, Vol. 45 ›› Issue (8): 53-59. doi: 10.19678/j.issn.1000-3428.0052493

• 先进计算与数据处理 • 上一篇    下一篇

基于智能聚类模型的海量数据快速显示方法

唐鸿成a, 文畅a, 冯文祥b, 谢凯b, 方文青b   

  1. 长江大学 a. 计算机科学学院;b. 电子信息学院, 湖北 荆州 434023
  • 收稿日期:2018-08-27 修回日期:2018-11-26 出版日期:2019-08-15 发布日期:2019-08-08
  • 作者简介:唐鸿成(1997-),男,硕士研究生,主研方向为大数据技术、三维建模、图形图像处理;文畅(通信作者),讲师、硕士;冯文祥,硕士研究生;谢凯,教授、博士;方文青,讲师、博士。
  • 基金资助:
    国家自然科学基金(61701046)。

Rapid Display Method of Massive Data Based on Intelligent Clustering Model

TANG Hongchenga, WEN Changa, FENG Wenxiangb, XIE Kaib, FANG Wenqingb   

  1. a. School of Computer Science;b. School of Electronic Information, Yangtze University, Jingzhou, Hubei 434023, China
  • Received:2018-08-27 Revised:2018-11-26 Online:2019-08-15 Published:2019-08-08

摘要: 为实时显示三维数据体的海量数据,提出一种改进的海量数据快速显示算法。利用CURE聚类算法对数据进行整理,通过Hilbert R-tree对数据建立索引,根据可视化区域预测模型预测下一时刻的可视区域,以实现大量数据的快速可视化。实验结果表明,与基于视点运动的快速显示算法和基于可见性判断的可视化算法相比,该算法在不降低渲染质量的前提下,渲染速度分别提高18.27%和67.06%,预测区域错误率分别降低9.73%和22.37%,能够快速加载数据并且准确绘制大量三维数据体。

关键词: 海量数据, 希尔伯特R树, 预测模型, 聚类算法, 预加载算法

Abstract: In order to display three-dimensional massive data in real time,this paper proposes an improved rapid display algorithm for massive data.The CURE clustering algorithm is used to sort the data,and the data is indexed by Hilbert R-tree.The visual area prediction model predicts the next time visible area to realize rapid visualization of large amounts of data.Experimental results show that compared with the Visualization algorithm based on Motion of Viewpoint (VMV) and the Visualization algorithm based on Testing of Visibility (VTV),the rendering speed is 18.27% higher than the VMV algorithm without reducing the rendering quality.Compared with the VTV algorithm,the increase is 67.06%,the prediction area error rate is reduced by 9.73% compared with the VMV algorithm,and the VTV algorithm is reduced by 22.37%,which can quickly load data and accurately draw three-dimensional large data volume.

Key words: massive data, Hilbert R-tree, forecasting model, clustering algorithm, load in advance algorithm

中图分类号: