[1] YANG Haiming,PAN Zhisong,TAO Qing.Robust and adaptive online time series prediction with long short-term memory[EB/OL].[2019-09-20].http://downloads.hindawi.com/journals/cin/2017/9478952.pdf. [2] KRSTANOVIC S,PAULHEIM H.Ensembles of recurrent neural networks for robust time series forecasting[M].Berlin,Germany:Springer,2017. [3] GAO Hongchang,KONG Deguang,LU Miao,et al.Attention convolutional neural network for advertiser-level click-through rate forecasting[C]//Proceedings of 2018 World Wide Web Conference.New York,USA:ACM Press,2018:1855-1864. [4] XIAO Ding,LI Xu,LIN Xiuqin,et al.A time series prediction method based on self-adaptive RBF neural network[C]//Proceedings of the 4th International Conference on Computer Science and Network Technology.Washington D.C.,USA:IEEE Press,2015:147-189. [5] GAO Xiaofeng,CAO Zhenhao,LI Sha,et al.Taxonomy and evaluation for microblog popularity prediction[J].ACM Transactions on Knowledge Discovery from Data,2019,13(2):1-40. [6] BAGDOURI M,OARD D W.On predicting deletions of microblog posts[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management.New York,USA:ACM Press,2015:1707-1710. [7] LIU Z T,YAN,HAUSKRECHT M.A flexible forecasting framework for hierarchical time series with seasonal patterns[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.New York,USA:ACM Press,2018:889-892. [8] HYNDMAN R J,AHMED R A,ATHANASOPOULOS G,et al.Optimal combination forecasts for hierarchical time series[J].Com putational Statistics & Data Analysis,2011,55(9):2579-2589. [9] MADAN R,MANGIPUDI P S.Predicting computer network traffic:a time series forecasting approach using DWT,ARIMA and RNN[C]//Proceedings of 2018 International Conference on Contemporary Computing.Washington D.C.,USA:IEEE Press,2018:1-5. [10] KHANDELWAL I,ADHIKARI R,VERMA G.Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition[J].Procedia Computer Science,2015,48:173-179. [11] LI Huiyuan,PAN Lian,CHEN Mei,et al.RBM-based back propagation neural network with BSASA optimization for time series forecasting[C]//Proceedings of the 9th International Conference on Intelligent Human-Machine Systems and Cybernetics.Washington D.C.,USA:IEEE Press,2017:16-22. [12] WEI Dengfeng.Network traffic prediction based on RBF neural network optimized by improved gravitation search algorithm[J].Neural Computing and Applications,2017,28(8):2303-2312. [13] KIM W,GOYAL B,CHAWLA K,et al.Attention-based ensemble for deep metric learning[M].Berlin,Germany:Springer,2018. [14] LI Yuelong,TANG Dehua,JIANG Guiyuan,et al.Short term traffic flow forecasting based on dimension weighted residual LSTM[J].Computer Engineering,2019,45(6):1-5.(in Chinese) 李月龙,唐德华,姜桂圆,等.基于维度加权的残差LSTM短期交通流量预测[J].计算机工程,2019,45(6):1-5. [15] QIU X H,ZHANG L,REN Y,et al.Ensemble deep learning for regression and time series forecasting[C]//Proceedings of 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning.Washington D.C.,USA:IEEE Press,2014:159-168. [16] CHOI J Y,LEE B.Combining LSTM network ensemble via adaptive weighting for improved time series forecasting[EB/OL].[2019-09-20].http://downloads.hindawi.com/journals/mpe/2018/2470171.pdf. [17] RUAN Wenjie,SHENG Quan,XU Peipei,et al.Forecasting seasonal time series using weighted gradient RBF network based autoregressive model[C]//Proceedings of the 25th ACM International Conference on Information and Knowledge Management.New York,USA:ACM Press,2016:2021-2024. [18] AKYUZ A O,UYSAL M,BULBUL B A,et al.Ensemble approach for time series analysis in demand forecasting:ensemble learning[C]//Proceedings of 2017 IEEE International Conference on Innovations in Intelligent Systems and Applications.Washington D.C.,USA:IEEE Press,2017:195-203. [19] DENG Lujia,LIU Pingshan.Research on click-through rate prediction of advertisement based on GMM-FMs[J].Computer Engineering,2019,45(5):122-126.(in Chinese)邓路佳,刘平山.基于GMM-FMs的广告点击率预测研究[J].计算机工程,2019,45(5):122-126. [20] TAYLOR S J,BENJAMIN L.Forecasting at scale[EB/OL].[2019-09-20].https://peerj.com/preprints/3190.pdf. |