[1] KOLODZIEJ K W,HJELM J.Local positioning systems:LBS applications and services[M].[S.1.]:CRC Press,2006:101-158. [2] ASAHARA A,MARUYAMA K,SATO A,et al.Pedestrian movement prediction based on mixed Markov-chain model[C]//Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.New York,USA:ACM Press,2011:25-33. [3] QIAO Shaojie,SHEN Dayong,WANG Xiaoteng,et al.A self-adaptive parameter selection trajectory prediction approach via hidden Markov models[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(1):284-296. [4] LIAN Defu,ZHENG V W,XIE Xing.Collaborative filtering meets next check-in location prediction[C]//Proceedings of the 22nd International Conference on World Wide Web.New York,USA:ACM Press,2013:231-232. [5] MORZY M.Prediction of moving object location based on frequent trajectories[C]//Proceedings of International Symposium on Computer and Information Sciences.Berlin,Germany:Springer,2006:583-592. [6] MORZY M.Mining frequent trajectories of moving objects for location prediction[C]//Proceedings of International Workshop on Machine Learning and Data Mining in Pattern Recognition.Berlin,Germany:Springer,2007:667-680. [7] GAMBS S,KILLIJIAN M O,DEL PRADO C M N.Next place prediction using mobility markov chains[C]//Proceedings of the 1st Workshop on Measurement,Privacy,and Mobility.New York,USA:ACM Press,2012:3. [8] BAUMANN P,KLEIMINGER W,Santini S.The influence of temporal and spatial featureson the performance of next-place prediction algorithms[C]//Proceedings of ACM International Joint Conference on Pervasive and Ubiquitous Computing.New York,USA:ACM Press,2013:449-458. [9] YE Jihang,ZHU Zhe,CHENG Hong.What's your next move:user activity prediction in location-based social networks[C]//Proceedings of 2013 SIAM International Conference on Data Mining.Washington D.C.,USA:IEEE Press,2013:171-179. [10] LIU Qiang,WU Shu,WANG Liang,et al.Predicting the next location:a recurrent model with spatial and temporal contexts[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press,2016:194-200. [11] PASCANU R,MIKOLOV T,BENGIO Y.On the difficulty of training recurrent neural networks[C]//Proceedings of the 30th IEEE International Conference on Machine Learning.Washington D.C.,USA:IEEE Press,2013:1310-1318. [12] BENGIO Y,SIMARD P,FRASCONI P.Learning long-term dependencies with gradient descent is difficult[J].IEEE Transactions on Neural Networks,2002,5(2):157-166. [13] WANG Jian.Chinese text sentiment analysis using LSTM network based on L2 and nadam[C]//Proceedings of the 17th International IEEE Conference on Communication Technology.Washington D.C.,USA:IEEE Press,2017:1891-1895. [14] 梁军,柴玉梅,原慧斌,等.基于极性转移和LSTM递归网络的情感分析[J].中文信息学报,2015,29(5):152-159. [15] GRAVES A.Supervised sequence labelling with recurrent neural networks[M].Berlin,Germany:Springer,2012. [16] GRAVES A,SCHMIDHUBER J.Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J].Neural Networks,2005,18(5):602-610. [17] NNEIL D,PFEIFFER M,LIU S C.Phased LSTM:accelerating recurrent network training for long or event-based sequences[C]//Proceedings of ANIPS'16.Washington D.C.,USA:IEEE Press,2016:3882-3890. [18] GREFF K,SRIVASTAVA R K,KOUTNIK J,et al.LSTM:a search space odyssey[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(10):2222-2232. |