作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (8): 75-85. doi: 10.19678/j.issn.1000-3428.0067936

• 人工智能与模式识别 • 上一篇    下一篇

基于上下文知识增强型Transformer网络的抑郁检测

张亚洲1, 和玉1, 戎璐2, 王祥凯3,*()   

  1. 1. 郑州轻工业大学软件学院,河南 郑州 450001
    2. 郑州轻工业大学人事处,河南 郑州 450001
    3. 山东正云信息科技有限公司,山东 济南 250104
  • 收稿日期:2023-06-26 出版日期:2024-08-15 发布日期:2024-08-26
  • 通讯作者: 王祥凯
  • 基金资助:
    国家自然科学基金青年基金项目(62006212); 河南省科技攻关研究项目(222102210031); 中国博士后科学基金面上项目(2023M733907)

Depression Detection Based on Contextual Knowledge Enhanced Transformer Network

Yazhou ZHANG1, Yu HE1, Lu RONG2, Xiangkai WANG3,*()   

  1. 1. Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450001, Henan, China
    2. Human Resources Office, Zhengzhou University of Light Industry, Zhengzhou 450001, Henan, China
    3. Shandong Zhengyun Information Technology Co., Ltd., Jinan 250104, Shandong, China
  • Received:2023-06-26 Online:2024-08-15 Published:2024-08-26
  • Contact: Xiangkai WANG

摘要:

抑郁症作为一种常见的心理健康问题,严重影响人们的日常生活甚至是生命安全。鉴于目前的抑郁症检测存在主观性和人工干预等缺点,基于深度学习的自动检测方式成为热门研究方向。对于最易获取的文本模态而言,主要的挑战在于如何建模抑郁文本中的长距离依赖与序列依赖。为解决该问题,提出一种基于上下文知识的增强型Transformer网络模型RoBERTa-BiLSTM,旨在从抑郁文本序列中充分提取和利用上下文特征。结合序列模型与Transformer模型优点,建模单词间上下文交互,为抑郁类别揭示与信息表征提供参考。首先,利用RoBERTa方法将词汇嵌入到语义向量空间;其次,利用双向长短期记忆网络(BiLSTM)模型有效捕获长距离上下文语义;最后,在DAIC-WOZ和EATD-Corpus 2个大规模数据集上进行实证研究。实验结果显示,RoBERTa-BiLSTM模型的准确率分别达到0.74和0.93以上,召回率分别达到0.66和0.56以上,能够准确地检测抑郁症。

关键词: 抑郁检测, 序列模型, 深度学习, Transformer模型, 双向长短期记忆模型

Abstract:

Depression, as a prevalent mental health problem, substantially impacts individual′s daily lives and well-being. Addressing the limitations of current depression detection, such as subjectivity and manual intervention, automatic detection methods based on deep learning have become a popular research direction. The primary challenge in the most accessible text modality is modelling the long-range and sequence dependencies in depressive texts. To address this problem, this paper proposes a contextual knowledge-based enhanced Transformer network model, named Robustly optimized Bidirectional Encoder Representations from Transformers approach-Bidirectional Long Short-Term Memory(RoBERTa-BiLSTM), to comprehensively extract and utilize contextual features from depressive text sequences. By combining the strengths of sequence models and Transformer architectures, the proposed model captures contextual interactions between words to provide a reference for depression category prediction and information characterization. First, the RoBERTa model is employed to embed vocabulary into a semantic vector space, and then, a BiLSTM network effectively captures long-range contextual semantics. Finally, empirical research is conducted on two large-scale datasets, DAIC-WOZ and EATD-Corpus. Experimental results demonstrate that the model achieves an accuracy exceeding 0.74 and 0.93, and a recall exceeding 0.66 and 0.56, respectively, enabling accurate depression detection.

Key words: depression detection, sequence model, deep learning, Transformer model, Bi-directional Long Short-Term Memory(BiLSTM) model