1 |
WEI P C, PENG K Y, ROITBERG A, et al. Multi-modal depression estimation based on sub-attentional fusion[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2023: 623-639.
|
2 |
FALAGAS M E , VARDAKAS K Z , VERGIDIS P I . Under-diagnosis of common chronic diseases: prevalence and impact on human health. International Journal of Clinical Practice, 2007, 61 (9): 1569- 1579.
doi: 10.1111/j.1742-1241.2007.01423.x
|
3 |
ZHOU X Z , JIN K , SHANG Y Y , et al. Visually interpretable representation learning for depression recognition from facial images. IEEE Transactions on Affective Computing, 2020, 11 (3): 542- 552.
doi: 10.1109/TAFFC.2018.2828819
|
4 |
TSAKALIDIS A, LIAKATA M, DAMOULAS T, et al. Can we assess mental health through social media and smart devices? Addressing bias in methodology and evaluation[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Germany: Springer, 2019: 407-423.
|
5 |
王款, 宣士斌, 何雪东, 等. 基于交叉注意力Transformer的人体姿态估计方法. 计算机工程, 2023, 49 (7): 223- 231.
URL
|
|
WANG K , XUAN S B , HE X D , et al. Human pose estimation method based on cross attention Transformer. Computer Engineering, 2023, 49 (7): 223- 231.
URL
|
6 |
LIU Z, LIN W, SHI Y, et al. A robustly optimized BERT pre-training approach with post-training[C]//Proceedings of China National Conference on Chinese Computational Linguistics. Berlin, Germany: Springer, 2021: 471-484.
|
7 |
张应成, 杨洋, 蒋瑞, 等. 基于BiLSTM-CRF的商情实体识别模型. 计算机工程, 2019, 45 (5): 308- 314.
URL
|
|
ZHANG Y C , YANG Y , JIANG R , et al. Commercial intelligence entity recognition model based on BiLSTM-CRF. Computer Engineering, 2019, 45 (5): 308- 314.
URL
|
8 |
LOSADA D E , GAMALLO P . Evaluating and improving lexical resources for detecting signs of depression in text. Language Resources and Evaluation, 2020, 54 (1): 1- 24.
doi: 10.1007/s10579-018-9423-1
|
9 |
WOLOHAN J T, HIRAGA M, MUKHERJEE A, et al. Detecting linguistic traces of depression in topic-restricted text: attending to self-stigmatized depression with NLP[C]//Proceedings of the 1st International Workshop on Language Cognition and Computational Models. Stroudsburg, USA: ACL Press, 2018: 11-21.
|
10 |
WILLIAMSON J R, GODOY E, CHA M, et al. Detecting depression using vocal, facial and semantic communication cues[C]//Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge. New York, USA: ACM Press, 2016: 11-18.
|
11 |
YANG L, JIANG D M, HE L, et al. Decision tree based depression classification from audio video and language information[C]//Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge. New York, USA: ACM Press, 2016: 89-96.
|
12 |
LAM G, HUANG D Y, LIN W S. Context-aware deep learning for multi-modal depression detection[C]// Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2019: 3946-3950.
|
13 |
韩虎, 赵启涛, 孙天岳, 等. 面向社交媒体评论的上下文语境讽刺检测模型. 计算机工程, 2021, 47 (1): 66- 71.
URL
|
|
HAN H , ZHAO Q T , SUN T Y , et al. Contextual sarcasm detection model for social media comments. Computer Engineering, 2021, 47 (1): 66- 71.
URL
|
14 |
VASHA Z N , SHARMA B , ESHA I J , et al. Depression detection in social media comments data using machine learning algorithms. Bulletin of Electrical Engineering and Informatics, 2023, 12 (2): 987- 996.
doi: 10.11591/eei.v12i2.4182
|
15 |
TROTZEK M , KOITKA S , FRIEDRICH C M . Utilizing neural networks and linguistic metadata for early detection of depression indications in text sequences. IEEE Transactions on Knowledge and Data Engineering, 2018, 32 (3): 588- 601.
|
16 |
AMANAT A , RIZWAN M , JAVED A R , et al. Deep learning for depression detection from textual data. Electronics, 2022, 11 (5): 2079- 9292.
|
17 |
YU L X , JIANG W Y , REN Z H , et al. Detecting changes in attitudes toward depression on Chinese social media: a text analysis. Journal of Affective Disorders, 2021, 280 (Pt A): 354- 363.
|
18 |
LI Z P , AN Z Y , CHENG W C , et al. MHA: a multimodal hierarchical attention model for depression detection in social media. Health Information Science and Systems, 2023, 11 (1): 6.
|
19 |
YADAV U , SHARMA A K . A novel automated depression detection technique using text transcript. International Journal of Imaging Systems and Technology, 2023, 33 (1): 108- 122.
|
20 |
SENN S, TLACHAC M L, FLORES R, et al. Ensembles of BERT for depression classification[C]// Proceedings of the 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Washington D. C., USA: IEEE Press, 2022: 4691-4694.
|
21 |
PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL Press, 2014: 1532-1543.
|
22 |
PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: ACL Press, 2018: 2227-2237.
|
23 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: ACL Press, 2019: 4171-4186.
|
24 |
贺小伟, 徐靖杰, 王宾, 等. 基于GRU-LSTM组合模型的云计算资源负载预测研究. 计算机工程, 2022, 48 (5): 11-17, 34.
URL
|
|
HE X W , XU J J , WANG B , et al. Research on cloud computing resource load forecasting based on GRU-LSTM combination model. Computer Engineering, 2022, 48 (5): 11-17, 34.
URL
|
25 |
GRATCH J, ARTSTEIN R, LUCAS G, et al. The distress analysis interview corpus of human and computer interviews[C]//Proceedings of the 9th International Conference on Language Resources and Evaluation. Paris, France: ELRA Press, 2014: 3123-3128.
|
26 |
SHEN Y, YANG H Y, LIN L. Automatic depression detection: an emotional audio-textual corpus and a GRU/BiLSTM-based model[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2022: 6247-6251.
|
27 |
LIU X Y , WU J X , ZHOU Z H . Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics, 2009, 39 (2): 539- 550.
|
28 |
ALHANAI T, GHASSEMI M, GLASS J. Detecting depression with audio/text sequence modeling of interviews[C]//Proceedings of the Annual Conference of the International Speech Communication Association. Baixas, France: ISCA Press, 2018: 1716-1720.
|