1 |
|
|
|
2 |
|
3 |
MA D, CHEN X Y, CAO R S, et al. Relation-aware graph transformer for SQL-to-text generation. Applied Sciences, 2021, 12(1): 369.
|
4 |
MONTAGUE R. Universal grammar. Theoria, 1970, 36(3): 373- 398.
doi: 10.1111/j.1755-2567.1970.tb00434.x
|
5 |
LAKE B M, ULLMAN T D, TENENBAUM J B, et al. Building machines that learn and think like people. Behavioral and Brain Sciences, 2016, 40, 253- 267.
|
6 |
YU T, ZHANG R, YANG K, et al. Spider: a large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 3911-3921.
|
7 |
LAKE B, BARONI M. Generalization without systematicity: on the compositional skills of sequence-to-sequence recurrent networks[EB/OL]. [2023-02-10]. https://arxiv.org/abs/1711.00350v3.
|
8 |
|
9 |
KEYSERS D, SCHARLI N, SCALES N, et al. Measuring compositional generalization: a comprehensive method on realistic data[EB/OL]. [2023-02-10]. https://arxiv.org/abs/1912.09713.
|
10 |
BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of 2008 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2008: 224-236.
|
11 |
HUPKES D, DANKERS V, MUL M, et al. Compositionality decomposed: how do neural networks generalise?. Journal of Artificial Intelligence Research, 2020, 67, 757- 795.
doi: 10.1613/jair.1.11674
|
12 |
PRICE P J. Evaluation of spoken language systems: the ATIS domain[C]//Proceedings of Workshop on Speech and Natural Language. New York, USA: ACM Press, 1990: 91-95.
|
13 |
DAHL D A, BATES M, BROWN M, et al. Expanding the scope of the ATIS task: the ATIS-3 corpus[C]//Proceedings of Workshop on Human Language Technology. New York, USA: ACM Press, 1994: 43-48.
|
14 |
ZELLE J, MOONEY R. Learning to parse database queries using inductive logic programming[C]//Proceedings of the 13th National Conference on Artificial Intelligence. New York, USA: ACM Press, 1996: 1050-1055.
|
15 |
TANG L R, MOONEY R J. Using multiple clause constructors in inductive logic programming for semantic parsing. Berlin, Germany: Springer, 2001.
|
16 |
POPESCU A M, ETZIONI O, KAUTZ H. Towards a theory of natural language interfaces to databases[C]//Proceedings of the 8th International Conference on Intelligent User Interfaces. New York, USA: ACM Press, 2003: 149-157.
|
17 |
IYER S, KONSTAS I, CHEUNG A, et al. Learning a neural semantic parser from user feedback[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Lisbon, Portugal: ACL Press, 2017: 963-973.
|
18 |
LI F, JAGADISH H V. Constructing an interactive natural language interface for relational databases. Proceedings of VLDB Endowment, 2014, 8(1): 73- 84.
doi: 10.14778/2735461.2735468
|
19 |
|
20 |
ZHONG V, XIONG C M, SOCHER R. Seq2SQL: generating structured queries from natural language using reinforcement learning[EB/OL]. [2023-02-10]. http://arxiv.org/pdf/1709.00103.
|
21 |
GUO J Q, ZHAN Z, GAO Y, et al. Towards complex text-to-SQL in cross-domain database with intermediate representation[EB/OL]. [2023-02-10]. https://arxiv.org/abs/1905.08205v2.
|
22 |
WANG B L, SHIN R, LIU X D, et al. RAT-SQL: relation-aware schema encoding and linking for text-to-SQL parsers[EB/OL]. [2023-02-10]. http://arxiv.org/abs/1911.04942v4.
|
23 |
ZHANG A, WU K, WANG L J, et al. Data augmentation with hierarchical SQL-to-question generation for cross-domain text-to-SQL parsing[C]//Proceedings of EMNLPʼ21. Washington D. C., USA: IEEE Press, 2021: 8974-898.
|
24 |
SHAW P, CHANG M W, PASUPAT P, et al. Compositional generalization and natural language variation: can a semantic parsing approach handle both?[EB/OL]. [2023-02-10]. http://arxiv.org/abs/2010.12725v2.
|
25 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9(8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
26 |
GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM networks[C]//Proceedings of IEEE International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2005: 2047-2052.
|
27 |
VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is all you need[C]//Proceedings of NIPSʼ17. Cambridge, USA: MIT Press, 2017: 5998-6008.
|
28 |
|
29 |
|
30 |
赵志超, 游进国, 何培蕾, 等. 数据库中文查询对偶学习式生成SQL语句研究. 中文信息学报, 2023, 37(3): 164- 172.
doi: 10.3969/j.issn.1003-0077.2023.03.016
|
|
ZHAO Z C, YOU J G, HE P L, et al. Generating SQL statement from Chinese query based on dual learning. Journal of Chinese Information Processing, 2023, 37(3): 164- 172.
doi: 10.3969/j.issn.1003-0077.2023.03.016
|
31 |
赵猛, 陈珂, 寿黎但, 等. 基于树状模型的复杂自然语言查询转SQL技术研究. 软件学报, 2022, 33(12): 4727- 4745.
URL
|
|
ZHAO M, CHEN K, SHOU L D, et al. Converting complex natural language query to SQL based on tree representation model. Journal of Software, 2022, 33(12): 4727- 4745.
URL
|
32 |
PAPINENI K, ROUKOS S, WARD T, et al. BLEU: a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. [S. 1. ]: ACL Press, 2002: 311-318.
|