[1] 顾砾, 季怡, 刘纯平.基于多模态特征融合的三维点云分类方法[J].计算机工程, 2021, 47(2):279-284. GU L, JI Y, LIU C P.Classification method of three-dimensional point cloud based on multiple modal feature fusion[J].Computer Engineering, 2021, 47(2):279-284.(in Chinese) [2] 王亚, 郑博文, 张欣.基于多模态融合的三维模型检索算法研究[J].计算机应用研究, 2021, 38(3):685-688, 695. WANG Y, ZHENG B W, ZHANG X.3D model retrieval algorithm based on multimodal fusion[J].Application Research of Computers, 2021, 38(3):685-688, 695.(in Chinese) [3] 刘安安, 李天宝, 王晓雯, 等.基于深度学习的三维模型检索算法综述[J].数据采集与处理, 2021, 36(1):1-21. LIU A A, LI T B, WANG X W, et al.Review of 3D model retrieval algorithms based on deep learning[J].Journal of Data Acquisition and Processing, 2021, 36(1):1-21.(in Chinese) [4] 张满囤, 燕明晓, 马英石, 等.基于八叉树结构的三维体素模型检索[J].计算机学报, 2021, 44(2):334-346. ZHANG M D, YAN M X, MA Y S, et al.3D voxel model retrieval based on octree structure[J].Chinese Journal of Computers, 2021, 44(2):334-346.(in Chinese) [5] NIE W Z, ZHAO Y, NIE J, et al.CLN:cross-domain learning network for 2D image-based 3D shape retrieval[J].IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3):992-1005. [6] SU Y T, LI Y Q, SONG D, et al.Joint intermediate domain generation and distribution alignment for 2D image-based 3D objects retrieval[J].IEEE Transactions on Multimedia, 2021, 23:2127-2138. [7] LIANG S, DAI W D, WEI Y C.Uncertainty learning for noise resistant sketch-based 3D shape retrieval[J].IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2021, 30:8632-8643. [8] LI W H, ZHAO Z L, LIU A N, et al.Joint local correlation and global contextual information for unsupervised 3D model retrieval and classification[J].IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(5):3265-3278. [9] SONG D, LI T B, LI W H, et al.Universal cross-domain 3D model retrieval[J].IEEE Transactions on Multimedia, 2021, 23:2721-2731. [10] GAO Z, ZHANG Y, ZHANG H, et al.Multi-level view associative convolution network for view-based 3D model retrieval[J].IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(4):2264-2278. [11] WU Z R, SONG S R, KHOSLA A, et al.3D ShapeNets:a deep representation for volumetric shapes[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:1912-1920. [12] MATURANA D, SCHERER S.VoxNet:a 3D convolutional neural network for real-time object recognition[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C., USA:IEEE Press, 2015:922-928. [13] QI C R, YI L, SU H, et al.PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2017:5105-5114. [14] WANG Y, SUN Y B, LIU Z W, et al.Dynamic graph CNN for learning on point clouds[J].ACM Transactions on Graphics, 2019, 38(5):1-12. [15] SU H, MAJI S, KALOGERAKIS E, et al.Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2016:945-953. [16] FENG Y F, ZHANG Z Z, ZHAO X B, et al.GVCNN:group-view convolutional neural networks for 3D shape recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:264-272. [17] YOU H X, FENG Y F, JI R R, et al.PVNet:a joint convolutional network of point cloud and multi-view for 3D shape recognition[C]//Proceedings of the 26th ACM International Conference on Multimedia.New York, USA:ACM Press, 2018:1310-1318. [18] NIE W Z, LIANG Q, WANG Y X, et al.MMFN:multimodal information fusion networks for 3D model classification and retrieval[J].ACM Transactions on Multimedia Computing, Communications, and Applications, 2020, 16(4):1-22. [19] BAI J J, GONG B, ZHAO Y N, et al.Multi-scale representation learning on hypergraph for 3D shape retrieval and recognition[J].IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2021, 30:5327-5338. [20] DEY S, RIBA P, DUTTA A, et al.Doodle to search:practical zero-shot sketch-based image retrieval[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:2174-2183. [21] DUTTA A, AKATA Z.Semantically tied paired cycle consistency for any-shot sketch-based image retrieval[J].International Journal of Computer Vision, 2020, 128(10):2684-2703. [22] DENG C, XU X X, WANG H, et al.Progressive cross-modal semantic network for zero-shot sketch-based image retrieval[J].IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2020, 29:8892-8902. [23] ZHANG Z L, ZHANG Y J, FENG R, et al.Zero-shot sketch-based image retrieval via graph convolution network[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):12943-12950. [24] JING L L, VAHDANI E, TAN J X, et al.Cross-modal center loss for 3D cross-modal retrieval[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:3141-3150. [25] GAO J, HE Y H, ZHANG X Y, et al.Duplicate short text detection based on Word2Vec[C]//Proceedings of the 8th IEEE International Conference on Software Engineering and Service Science.Washington D.C., USA:IEEE Press, 2018:33-37. [26] LIU A N, GUO F B, ZHOU H Y, et al.Semantic and context information fusion network for view-based 3D model classification and retrieval[J].IEEE Access, 2020, 8:155939-155950. [27] LI Y, BU R, SUN M, et al.PointCNN:convolution on x-transformed points[EB/OL].[2022-05-05].https://proceedings.neurips.cc/paper/2018/file/f5f8590cd58a54e94377e6ae2eded4d9-Paper.pdf. [28] LIANG Q, XIAO M M, SONG D.3D shape recognition based on multi-modal information fusion[J].Multimedia Tools and Applications, 2021, 80(11):16173-16184. |