作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2020, Vol. 46 ›› Issue (8): 93-100. doi: 10.19678/j.issn.1000-3428.0057570

• 人工智能与模式识别 • 上一篇    下一篇

融合知识图谱与用户评论的商品推荐算法

汤伟韬1, 余敦辉1,2, 魏世伟1   

  1. 1. 湖北大学 计算机与信息工程学院, 武汉 430062;
    2. 湖北省教育信息化工程技术中心, 武汉 430062
  • 收稿日期:2020-03-03 修回日期:2020-04-17 发布日期:2020-04-28
  • 作者简介:汤伟韬(1999-),男,本科生,主研方向为知识图谱;余敦辉,教授、博士;魏世伟(通信作者),讲师。
  • 基金资助:
    国家自然科学基金(61977021);湖北省技术创新专项重大项目(2018ACA13)。

Commodity Recommendation Algorithm Fusing with Knowledge Graph and User Comment

TANG Weitao1, YU Dunhui1,2, WEI Shiwei1   

  1. 1. School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China;
    2. Hubei Provincial Education Informationization Engineering and Technology Center, Wuhan 430062, China
  • Received:2020-03-03 Revised:2020-04-17 Published:2020-04-28

摘要: 针对基于用户评论的商品推荐算法未充分利用评论之间关联信息的问题,提出一种融合知识图谱与用户评论的商品推荐算法。结合知识图谱对用户评论进行商品特征和情感词提取,构建商品特征集合和商品向量并计算商品相似度矩阵,根据情感词确定商品特征得分,通过随机游走商品节点获取商品特征权重。在此基础上,根据商品特征得分和商品特征权重计算商品推荐价值并进行Top-k推荐。实验结果表明,与基于知识图谱的推荐算法、协同过滤算法、基于内容的推荐算法和混合推荐算法相比,该算法的准确率、召回率和F值最高分别提升15.81%、7.27%和8.55%。

关键词: 推荐算法, 知识图谱, 用户评论, 商品特征, 随机游走模型

Abstract: Focused on the issue that the correlation information between user comments is not fully made use of by the existing comment-based commodity recommendation algorithms,this paper proposes a commodity recommendation algorithm fusing with knowledge graph and user comment.The algorithm uses knowledge graph to extract commodity features and emotional words,the commodity feature set and commodity vector are constructed,and the commodity similarity matrix is calculated.Then the commodity feature score is determined according to emotional words,and the weight of a commodity feature is determined by random walking commodity nodes.On the basis of the score and weight of commodity features,the recommended value of the commodity is calculated and thus Top-k recommendation is made.In the comparison experiments with the knowledge graph-based recommendation algorithm,collaborative filtering recommendation algorithm,content-based recommendation algorithm and hybrid recommendation algorithm,results show that the proposed algorithm increases the precision by up to 15.81%,recall rate by up to 7.27%,and F-score by up to 8.55%.

Key words: recommendation algorithm, knowledge graph, user comment, commodity feature, random walk model

中图分类号: