[1] JIANG Ting,XI Xiaoming,YUE Houguang.Classification of pulmonary nodules by semi-supervised FCM based on prior distribution[J].CAAI Transactions on Intelligent Systems,2017,12(5):729-734.(in Chinese) 姜婷,袭肖明,岳厚光.基于分布先验的半监督FCM的肺结节分类[J].智能系统学报,2017,12(5):729-734. [2] ZHU Guoce.Research on detection method of lung nodules in medical images based on deep convolutional neural network[D].Wuxi:Jiangnan University,2017.(in Chinese) 朱国策.基于深度卷积神经网络的医学图像肺结节检测方法研究[D].无锡:江南大学,2017. [3] LIU Shaofang.System design study of pulmonary nodule CAD integrating with three-dimensional information of DICOMCT sequence[D].Chengdu:University of Electronic Science and Technology of China,2013.(in Chinese) 刘少芳.结合DICOM CT序列三维信息肺结节CAD系统设计研究[D].成都:电子科技大学,2013. [4] HAN Fangfang.Research on the detection and diagnosis methods for pulmonary nodules based on multi-dimensional features of CT images[D].Shenyang:Northeastern University,2015.(in Chinese) 韩芳芳.基于CT图像多维特征的肺结节检测和诊断方法研究[D].沈阳:东北大学,2015. [5] HU Meng,FU Yuanyuan,XIONG Qiang.CT-guided percutaneous lung biopsy in diagnosis of pulmonary nodules:438 cases analysis[J].Chinese Journal of Respiratory and Critical Care Medicine,2017,16(1):40-45.(in Chinese) 胡猛,符媛媛,熊强.CT引导下经皮肺穿刺活检术对438例肺部肿块的临床诊断意义[J].中国呼吸与危重监护杂志,2017,16(1):40-45. [6] LI Zhi,SUN Yubao,WANG Feng,et al.Clothing image classification and retrieval algorithm based on deep convolutional neural network[J].Computer Engineering,2016,42(11):309-315.(in Chinese) 厉智,孙玉宝,王枫,等.基于深度卷积神经网络的服装图像分类检索算法[J].计算机工程,2016,42(11):309-315. [7] WU Lushen,CHANG Cancan,WANG Xiaohui,et al.Image recognition method based on local adjustment convolutional neural network[J].Computer Engineering,2018,44(12):240-246.(in Chinese) 吴禄慎,常参参,王晓辉,等.基于局部调节卷积神经网络的图像识别方法[J].计算机工程,2018,44(12):240-246. [8] SABOUR S,FROSST N,HINTON G E.Dynamic routing between capsules[EB/OL].[2019-01-15]. https://arxiv.org/pdf/1710.09829.pdf. [9] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-01-15]. https://arxiv.org/pdf/1409.1556v6.pdf. [10] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Computer Society,2015:770-778. [11] JIN Lanyi,GUO Shuxu,MA Shuzhi,et al.Liver segmentation in CT image based on semi-supervised ladder network[J].Journal of Jilin University (Information Science Edition),2018,36(2):158-164.(in Chinese) 金兰依,郭树旭,马树志,等.基于半监督阶梯网络的肝脏CT影像分割[J].吉林大学学报(信息科学版),2018,36(2):158-164. [12] XING Zhian.The research and implement of lung nodule detection based on semi-supervised learning in CT images[D].Harbin:Harbin Institute of Technology,2010.(in Chinese) 邢志安.基于半监督学习的肺部CT图像中结节检测研究与实现[D].哈尔滨:哈尔滨工业大学,2010. [13] CUI Wenhui,LIU Yanlin,LI Yuxing,et al.Semi-supervised brain lesion segmentation with an adapted mean teacher model[C]//Proceedings of International Conference on Information Processing in Medical Imaging.Berlin,Germany:Springer,2019:554-565. [14] XU Yan,MO Tao,FENG Qiwei,et al.Deep learning of feature representation with multiple instance learning for medical image analysis[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.Washington D.C.,USA:IEEE Press,2014:1626-1630. [15] KHOSRAVAN N,BAGCI U.Semi-supervised multi-task learning for lung cancer diagnosis[C]//Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Washington D.C.,USA:IEEE Press,2018:710-713. [16] LONG Mingsheng,CAO Zhangjie,WANG Jianmin,et al.Learning multiple tasks with deep relationship networks[EB/OL].[2019-01-15].https://arxiv.org/pdf/1506.02117v4.pdf. [17] REN Chengjuan.Application of multi-task learning and convolutional neural network in face recognition [J].Electronic Technology and Software Engineering,2018(14):69.(in Chinese) 任成娟.多任务学习及卷积神经网络在人脸识别中的运用[J].电子技术与软件工程,2018(14):69. [18] SØGAARD A,GOLDBERG Y.Deep multi-task learning with low level tasks supervised at lower layers[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.Stroudsburg,USA:Association for Computational Linguistics,2016:231-235. [19] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolu-tional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin,Germany:Springer,2015:234-241. [20] LIAO Fangzhou,LIANG Ming,LI Zhe,et al.Evaluate the malignancy of pulmonary nodules using the 3D deep leaky noisy-or network[EB/OL].[2019-01-14].https://arxiv.org/pdf/1711.08324.pdf. [21] Booz Allen Hamilton.2018 data science bowl [EB/OL].[2019-01-14].https://www.kaggle.com/c/data-science-bowl-2018. |