[1] WANG N, LIU X L, LI L, et al.Screening for early-stage Parkinson's disease:swallow tail sign on MRI susceptibility map-weighted images compared with PET[J].Journal of Magnetic Resonance Imaging:JMRI, 2021, 53(3):722-730. [2] 成涛, 黄小华, 匡静, 等.SBM在中枢神经系统中的研究进展[J].国际医学放射学杂志, 2020, 43(1):35-40. CHENG T, HUANG X H, KUANG J, et al.Research progress of surface-based morphometry in the central nervous system[J].International Journal of Medical Radiology, 2020, 43(1):35-40.(in Chinese) [3] LIU X, WANG N, CHEN C, et al.Swallow tail sign on Susceptibility Map-Weighted Imaging(SMWI) for disease diagnosing and severity evaluating in Parkinsonism[J].Acta Radiologica, 2021, 62(2):234-242. [4] LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:3431-3440. [5] RONNEBERGER O, FISCHER P, BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2015:234-241. [6] LANGLEY J, HUDDLESTON D E, LIU C J, et al.Reproducibility of locus coeruleus and substantia nigra imaging with neuromelanin sensitive MRI[J].Magnetic Resonance Materials in Physics, Biology and Medicine, 2017, 30(2):121-125. [7] TAKAHASHI H, WATANABE Y, TANAKA H, et al.Comprehensive MRI quantification of the substantia nigra pars compacta in Parkinson's disease[J].European Journal of Radiology, 2018, 109:48-56. [8] TAKAHASHI H, WATANABE Y, TANAKA H, et al.Quantifying the severity of Parkinson disease by use of dopaminergic neuroimaging[J].AJR American Journal of Roentgenology, 2019, 213(1):163-168. [9] ALOM M Z, HASAN M, YAKOPCIC C, et al.Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation[EB/OL].[2021-10-05].https://arxiv.org/abs/1802.06955. [10] OKTAY O, SCHLEMPER J, FOLGOC L L, et al.Attention U-Net:learning where to look for the pancreas[EB/OL].[2021-10-05].https://arxiv.org/abs/1804.03999. [11] MATEEN M, WEN J H, NASRULLAH N, et al.Exudate detection for diabetic retinopathy using pretrained convolutional neural networks[J].Complexity, 2020, 15:1-11. [12] 亢洁, 丁菊敏, 万永, 等.基于分水岭修正与U-Net的肝脏图像分割算法[J].计算机工程, 2020, 46(1):255-261, 270. KANG J, DING J M, WAN Y, et al.Liver image segmentation algorithm based on watershed correction and U-Net[J].Computer Engineering, 2020, 46(1):255-261, 270.(in Chinese) [13] TAKIKAWA T, ACUNA D, JAMPANI V, et al.Gated-SCNN:gated shape CNNs for semantic segmentation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2020:5228-5237. [14] 梅旭璋, 江红, 孙军.基于密集注意力网络的视网膜血管图像分割[J].计算机工程, 2020, 46(3):267-272, 279. MEI X Z, JIANG H, SUN J.Retinal vessel image segmentation based on dense attention network[J].Computer Engineering, 2020, 46(3):267-272, 279.(in Chinese) [15] 郝华颖, 赵昆, 苏攀, 等.一种基于改进ResU-Net的角膜神经分割算法[J].计算机工程, 2021, 47(1):217-223. HAO H Y, ZHAO K, SU P, et al.A corneal nerve segmentation algorithm based on improved ResU-Net[J].Computer Engineering, 2021, 47(1):217-223.(in Chinese) [16] 王磐, 强彦, 杨晓棠, 等.基于双注意力3D-UNet的肺结节分割网络模型[J].计算机工程, 2021, 47(2):307-313. WANG P, QIANG Y, YANG X T, et al.Network model for lung nodule segmentation based on double attention 3D-UNet[J].Computer Engineering, 2021, 47(2):307-313.(in Chinese) [17] DING F, YANG G, WU J, et al.High-order attention networks for medical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2020:253-262. [18] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[EB/OL].[2021-10-05].https://arxiv.org/abs/1706.03762. [19] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al.An image is worth 16×16 words:transformers for image recognition at scale[EB/OL].[2021-10-05].https://arxiv.org/pdf/2010.11929.pdf. [20] LIU Z, LIN Y T, CAO Y, et al.Swin Transformer:hierarchical vision Transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2021:9992-10002. [21] DAI X Y, CHEN Y P, YANG J W, et al.Dynamic DETR:end-to-end object detection with dynamic attention[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2021:2968-2977. [22] SUN Z Q, CAO S C, YANG Y M, et al.Rethinking Transformer-based set prediction for object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2021:3591-3600. [23] WANG W, CHEN C, DING M, et al.TransBTS:multimodal brain tumor segmentation using Transformer[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2021:109-119. [24] ZHENG S X, LU J C, ZHAO H S, et al.Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:6877-6886. [25] CAO J W, JIANG L L, HOU J L, et al.Exploiting deep cross-slice features from CT images for multi-class pneumonia classification[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2021:205-209. [26] YANG S Y, JIANG L Q, CAO Z Q, et al.Deep learning for detecting corona virus disease 2019(COVID-19) on high-resolution computed tomography:a pilot study[J].Annals of Translational Medicine, 2020, 8(7):450. [27] LIU X L, YANG L Q, LIU F T, et al.Short-echo-time magnitude image derived from quantitative susceptibility mapping could resemble neuromelanin-sensitive MRI image in substantia nigra[J].BMC Neurology, 2020, 20(1):262. |