1 |
|
2 |
|
3 |
|
4 |
HU W M, TIAN G D, KANG Y X, et al. Dual sticky hierarchical dirichlet process hidden Markov model and its application to natural language description of motions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (10): 2355- 2373.
doi: 10.1109/TPAMI.2017.2756039
|
5 |
CHEN P H, LIN C J, SCHÖLKOPF B. A tutorial on ν-support vector machines. Applied Stochastic Models in Business and Industry, 2005, 21 (2): 111- 136.
doi: 10.1002/asmb.537
|
6 |
TEIXEIRA J, SARMENTO L, OLIVEIRA E. A bootstrapping approach for training a NER with conditional random fields[C]//Proceedings of Portuguese Conference on Artificial Intelligence. Berlin, Germany: Springer, 2011: 664-678.
|
7 |
ABBAS G, PHILIPPE L, AHMAD R, et al. Context-aware adversarial training for name regularity bias in named entity recognition. Transactions of the Association for Computational Linguistics, 2021, 9, 586- 604.
doi: 10.1162/tacl_a_00386
|
8 |
EMELYANOV A A, ARTEMOVA E. Multilingual named entity recognition using pretrained embeddings, attention mechanism and NCRF[EB/OL]. [2022-12-02]. https://arxiv.org/abs/1906.09978.
|
9 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2022-12-02]. https://arxiv.org/abs/1810.04805.
|
10 |
JOSHI A, LAL R, FININ T, et al. Extracting cybersecurity related linked data from text[C]//Proceedings of 2013 IEEE International Conference on Semantic Computing. Washington D. C., USA: IEEE Press, 2013: 252-259.
|
11 |
金砚硕, 迟呈英, 战学刚. 一种基于隐马尔可夫聚类的信息提取方法. 情报杂志, 2008, 27 (3): 96- 98.
doi: 10.3969/j.issn.1002-1965.2008.03.032
|
|
JIN Y S, CHI C Y, ZHAN X G. A method for text information extraction based on hidden Markov model clustering. Journal of Information, 2008, 27 (3): 96- 98.
doi: 10.3969/j.issn.1002-1965.2008.03.032
|
12 |
李中仁. 基于条件随机场的信息抽取与情报信息可视化[D]. 北京: 北方工业大学, 2017.
|
|
LI Z R. Information extraction and information visualization based on conditional random fields[D]. Beijing: North China University of Technology, 2017. (in Chinese)
|
13 |
GRISHMAN R. Adaptive information extraction and sublanguage analysis[C]//Proceedings of IJCAI'01. Washington D. C., USA: IEEE Press, 2001: 1-4.
|
14 |
ZENG D, LIU K, LAI S, et al. Relation classification via convolutional deep neural network[C]//Proceedings of COLING'14. Washington D. C., USA: IEEE Press, 2014: 2335-2344.
|
15 |
|
16 |
WANG L L, CAO Z, DE MELO G, et al. Relation classification via multi-level attention CNNs[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2016: 1298-1307.
|
17 |
ZHANG S, ZHENG D, HU X, et al. Bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. Washington D. C., USA: IEEE Press, 2015: 73-78.
|
18 |
ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 2: Short Papers). Stroudsburg, USA: Association for Computational Linguistics, 2016: 207-212.
|
19 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
20 |
RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners. OpenAI Blog, 2019, 1 (8): 9.
URL
|
21 |
|
22 |
JOSHI M, CHEN D Q, LIU Y H, et al. SpanBERT: improving pre-training by representing and predicting spans. Transactions of the Association for Computational Linguistics, 2020, 8, 64- 77.
doi: 10.1162/tacl_a_00300
|
23 |
|
24 |
|
25 |
YAMADA I, ASAI A, SHINDO H, et al. LUKE: deep contextualized entity representations with entity-aware self-attention[EB/OL]. [2022-12-02]. https://arxiv.org/abs/2010.01057.
|
26 |
|
27 |
WEI J, ZOU K. EDA: easy data augmentation techniques for boosting performance on text classification tasks[EB/OL]. [2022-12-02]. https://arxiv.org/abs/1901.11196.
|
28 |
|
29 |
SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 4080-4090.
|
30 |
|
31 |
BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2020: 1877-1901.
|
32 |
|
33 |
SCHICK T, SCHÜTZE H. Exploiting cloze questions for few shot text classification and natural language inference[EB/OL]. [2022-12-02]. https://arxiv.org/abs/2001.07676.
|
34 |
|
35 |
|
36 |
CAELLES S, MANINIS K K, PONT-TUSET J, et al. One-shot video object segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 221-230.
|
37 |
FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2017: 1126-1135.
|