作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2020, Vol. 46 ›› Issue (4): 241-246. doi: 10.19678/j.issn.1000-3428.0054319

• 图形图像处理 • 上一篇    下一篇

基于马尔科夫链的随机测量矩阵研究

赵鸿图, 李成   

  1. 河南理工大学 物理与电子信息学院, 河南 焦作 454000
  • 收稿日期:2019-03-21 修回日期:2019-04-26 出版日期:2020-04-15 发布日期:2019-06-03
  • 作者简介:赵鸿图(1965-),男,副教授、博士,主研方向为图像处理、压缩感知;李成,硕士研究生。
  • 基金资助:
    河南省科技厅科技攻关和软科学项目(192102310446)。

Research on Random Measurement Matrix Based on Markov Chain

ZHAO Hongtu, LI Cheng   

  1. School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
  • Received:2019-03-21 Revised:2019-04-26 Online:2020-04-15 Published:2019-06-03

摘要: 测量矩阵是压缩感知理论中的重要组成部分,其将直接影响原始信号的重构精度。针对常用测量矩阵重构精度较低的问题,构造一种基于马尔科夫链的随机测量矩阵。利用马尔科夫链的随机性生成M个随机数,将随机数按照规则分别映射为-1和1后作为M×M维对角矩阵的元素,采用马尔科夫链生成M×(N-M)个随机数并按照规则分别映射为0和1,构成包含0和1元素的M×(N-M)维矩阵,并将这两部分矩阵相结合形成M×N的测量矩阵。仿真结果表明,该矩阵结构简单,相比常用测量矩阵和基于奇异值分解的Toeplitz结构矩阵重构精度得到明显提升,并且减少了运算量与存储空间。

关键词: 压缩感知, 测量矩阵, 马尔科夫链, 随机数, 映射

Abstract: Measurement matrix is an important part of the compressed sensing theory,and is related to the reconstructed accuracy of original signals.To address the low reconstruction accuracy of common measurement matrixes,this paper proposes a random measurement matrix based on Markov Chain.Firstly,M random numbers are generated by using the randomness of Markov Chain,and respectively mapped to -1 and 1 based on certain rules to serve as the elements of an M×M diagonal matrix.Secondly,M×(N-M) random numbers are generated by using Markov Chain,and mapped to 0 and 1 respectively to form an M×(N-M) matrix.Finally,the two matrixes are combined to form an M×N measurement matrix.Simulation results show that the proposed matrix has a simple structure,and can significantly improve the reconstruction accuracy compared with commonly used measurement matrixes and Toeplitz structure matrixes based on singular value decomposition.The proposed matrix also reduces the amount of calculation and saves storage space.

Key words: compressed sensing, measurement matrix, Markov chain, random number, mapping

中图分类号: