[1] 李冬梅, 张扬, 李东远, 等.实体关系抽取方法研究综述[J].计算机研究与发展, 2020, 57(7):1424-1448. LI D M, ZHANG Y, LI D Y, et al.Review of entity relation extraction methods[J].Journal of Computer Research and Development, 2020, 57(7):1424-1448.(in Chinese) [2] 江旭, 钱雪忠, 宋威.结合残差BiLSTM与句袋注意力的远程监督关系抽取[J].计算机工程, 2022, 48(10):110-115, 122. JIANG X, QIAN X Z, SONG W.Distantly supervised relationship extraction combined with residual BiLSTM and sentence bag attention[J].Computer Engineering, 2022, 48(10):110-115, 122.(in Chinese) [3] 鄂海红, 张文静, 肖思琪, 等.深度学习实体关系抽取研究综述[J].软件学报, 2019, 30(6):1793-1818. E H H, ZHANG W J, XIAO S Q, et al.Survey of entity relationship extraction based on deep learning[J].Journal of Software, 2019, 30(6):1793-1818.(in Chinese) [4] AUER S, BIZER C, KOBILAROV G, et al.DBpedia:a nucleus for a Web of open data[C]//Proceedings of the 2nd Asian Conference on Asian Semantic Web.Berlin, Germany:Springer, 2007:722-735. [5] BOLLACKER K, EVANS C, PARITOSH P, et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of 2008 ACM SIGMOD International Conference on Management of Data.New York, USA:ACM Press, 2008:1247-1250. [6] MIWA M, SÆTRE R, MIYAO Y, et al.A rich feature vector for protein-protein interaction extraction from multiple corpora[C]//Proceedings of 2009 Conference on Empirical Methods in Natural Language Processing.Washington D.C., USA:IEEE Press, 2009:121-130. [7] KAMBHATLA N.Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations[C]//Proceedings of ACL DEMO'04.[S.l.]:ACL, 2004:178-181. [8] TURIAN J, RATINOV L, BENGIO Y.Word representations:a simple and general method for semi-supervised learning[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2010:384-394. [9] NAYAK T, NG H T.Effective attention modeling for neural relation extraction[C]//Proceedings of the 23rd Conference on Computational Natural Language Learning.[S.l.]:ACL, 2019:603-612. [10] ZENG D, LIU K, LAI S, et al.Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics:Technical Papers.[S.l.]:ACL, 2014:2335-2344. [11] 张东东, 彭敦陆.ENT-BERT:结合BERT和实体信息的实体关系分类模型[J].小型微型计算机系统, 2020, 41(12):2557-2562. ZHANG D D, PENG D L.ENT-BERT:entity relation classification model combining BERT and entity information[J].Journal of Chinese Computer Systems, 2020, 41(12):2557-2562.(in Chinese) [12] VASHISHTH S, JOSHI R, PRAYAGA S S, et al.RESIDE:improving distantly-supervised neural relation extraction using side information[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing.[S.l.]:ACL, 2018:1257-1266. [13] MIWA M, BANSAL M.End-to-end relation extraction using LSTMs on sequences and tree structures[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2016:1105-1116. [14] KATIYAR A, CARDIE C.Going out on a limb:joint extraction of entity mentions and relations without dependency trees[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2017:917-928. [15] ZHENG S C, WANG F, BAO H Y, et al.Joint extraction of entities and relations based on a novel tagging scheme[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2017:1227-1236. [16] ZENG X R, ZENG D J, HE S Z, et al.Extracting relational facts by an end-to-end neural model with copy mechanism[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2018:506-514. [17] YU B, ZHANG Z, SHU X, et al.Joint extraction of entities and relations based on a novel decomposition strategy[C]//Proceedings of the 24th European Conference on Artificial Intelligence.Berlin, Germany:Springer, 2020:2282-2289. [18] MOSTAFA D, STEPHAN G, ORIOL V, et al.Universal transformers[EB/OL].[2021-12-05].https://arxiv.org/pdf/1807.03819.pdf. [19] LIU Y, OTT M, GOYAL N, et al.RoBERTa:a robustly optimized bert pretraining approach[EB/OL].[2021-12-05].https://arxiv.org/pdf/1907.11692v1.pdf. [20] LI S J, HE W, SHI Y B, et al.DuIE:a large-scale Chinese dataset for information extraction[C]//Proceedings of CCF International Conference on Natural Language Processing and Chinese Computing.Berlin, Germany:Springer, 2019:791-800. [21] HOFFMANN R, ZHANG C L, LING X, et al.Knowledge-based weak supervision for information extraction of overlapping relations[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2011:541-550. [22] REN X, WU Z Q, HE W Q, et al.CoType:joint extraction of typed entities and relations with knowledge bases[C]//Proceedings of the 26th International Conference on World Wide Web.New York, USA:ACM Press, 2017:1015-1024. [23] 王勇超, 穆华岭, 周灵智, 等.基于指针网络的实体与关系联合抽取方法[J].计算机应用研究, 2021, 38(4):1004-1007, 1021. WANG Y C, MU H L, ZHOU L Z, et al.Joint extraction method of entity and relationship based on pointer network[J].Application Research of Computers, 2021, 38(4):1004-1007, 1021.(in Chinese) [24] 陈仁杰, 郑小盈, 祝永新.融合实体类别信息的实体关系联合抽取[J].计算机工程, 2022, 48(3):46-53. CHEN R J, ZHENG X Y, ZHU Y X.Joint entity and relation extraction fusing entity type information[J].Computer Engineering, 2022, 48(3):46-53.(in Chinese) [25] 葛君伟, 李帅领, 方义秋.基于字词混合的中文实体关系联合抽取方法[J].计算机应用研究, 2021, 38(9):2619-2623. GE J W, LI S L, FANG Y Q.Joint extraction method of Chinese entity relationship based on mixture of characters and words[J].Application Research of Computers, 2021, 38(9):2619-2623.(in Chinese) |