[1] HUANG Wenjie,CAO Hongxing,GU Lan,et al.The application of ARIMA seasonal model of time series in long-term forecast[J].Chinese Science Bulletin,1980,25(22):1030-1032.(in Chinese)黄文杰,曹鸿兴,顾岚,等.时间序列的ARIMA季节模型在长期预报中的应用[J].科学通报,1980,25(22):1030-1032. [2] SHI Meijuan.The application of ARIMA model in investing forecast in fixed assets of Shanghai[J].Journal of Applied Statistics and Management,2005,24(1):69-74.(in Chinese)石美娟.ARIMA模型在上海市全社会固定资产投资预测中的应用[J].数理统计与管理,2005,24(1):69-74. [3] DAI Xiaofeng,XIAO Qingxian.Time series analysis applied in prediction of RMB's exchange rate[J].Journal of University of Shanghai for Science and Technology,2005,27(4):341-344.(in Chinese)戴晓枫,肖庆宪.时间序列分析方法及人民币汇率预测的应用研究[J].上海理工大学学报,2005,27(4):341-344. [4] XUE Ke,LI Zengzhi,LIU Liu,et al.Network traffic prediction based on ARIMA model[J].Microelectronics & Computer,2004,21(7):84-87.(in Chinese)薛可,李增智,刘浏,等.基于ARIMA模型的网络流量预测[J].微电子学与计算机,2004,21(7):84-87. [5] ZHU Jiayuan,DUAN Baojun,ZAHNG Hengxi.Prediction of time series based on least squares support vector machines[J].Computer Science,2003,30(8):124-125.(in Chinese)朱家元,段宝君,张恒喜.新型SVM对时间序列预测研究[J].计算机科学,2003,30(8):124-125. [6] FEI Fei,YE Feng.Application of sales volume forecast of group purchase based on decision tree method[J].Computer Systems & Applications,2013,22(2):133-137.(in Chinese)费斐,叶枫.决策树算法在团购商品销售预测中的应用[J].计算机系统应用,2013,22(2):133-137. [7] PASCANU R,MIKOLOV T,BENGIO Y.On the difficulty of training recurrent neural networks[EB/OL].[2019-08-02].https://www.ixueshu.com/document/10c73c0f9655fa2e318947a18e7f9386.html. [8] GRAVES A,MOHAMED A,HINTON G.Speech recognition with deep recurrent neural networks[C]//Proceedings of 2013 IEEE International Conference on Acoustics,Speech and Signal Processing.Washington D.C.,USA:IEEE Press,2013:6645-6649. [9] BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[EB/OL].[2019-08-02].https://arxiv.org/abs/1409.0473. [10] FAN Junxiang,LI Qi,ZHU Yajie,et al.Aspatio-temporal prediction framework for air pollution based on deep RNN[J].Science of Surveying and Mapping,2017,42(7):76-83.(in Chinese)范竣翔,李琦,朱亚杰,等.基于RNN的空气污染时空预报模型研究[J].测绘科学,2017,42(7):76-83. [11] WANG Huijian,LIU Zheng,LI Yun,et al.Trend prediction method of time series trends based on neural network language model[J].Computer Engineering,2019,45(7):13-19.(in Chinese)王慧健,刘峥,李云,等.基于神经网络语言模型的时间序列趋势预测方法[J].计算机工程,2019,45(7):13-19. [12] YANG Lihong,BAI Zhaoqiang.User behavior prediction based on feature engineering of quadratic combination and XGBoost model[J].Science Technology and Engineering,2018,18(14):186-189.(in Chinese)杨立洪,白肇强.基于二次组合的特征工程与XGBoost模型的用户行为预测[J].科学技术与工程,2018,18(14):186-189. [13] YAO Q M,WANG M S,HUGO J E,et al.Taking human out of learning applications:a survey on automated machine learning[EB/OL].[2019-08-02].https://www.researchgate.net/publication/328651973_Taking_Human_out_of_Learning_Applications_A_Survey_on_Automated_Machine_Learning. [14] WANG Lingti,XU Hua.An adaptive ensemble algorithm based on clustering and AdaBoost[J].Journal of Jilin University (Science Edition),2018,56(4):917-924.(in Chinese)王玲娣,徐华.一种基于聚类和AdaBoost的自适应集成算法[J].吉林大学学报(理学版),2018,56(4):917-924. [15] KUNCHEVA L I,WHITAKER C J.Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy[J].Machine Learning,2003,51(2):181-207. [16] CHU Rong,WANG Min,ZENG Xiaoqin,et al.A new diverse measure in ensemble learning using unlabeled data[C]//Proceedings of the 14th International Conference on Computational Intelligence,Communication Systems and Networks.Washington D.C.,USA:IEEE Press,2012:18-21. [17] LI Yijing,GUO Haixiang,LI Yanan,et al.A Boosting based ensemble learning algorithm in imbalanced data classification[J].Systems Engineering-Theory & Practice,2016,36(1):189-199.(in Chinese)李诒靖,郭海湘,李亚楠,等.一种基于Boosting的集成学习算法在不均衡数据中的分类[J].系统工程理论与实践,2016,36(1):189-199. [18] BREIMAN L.Bagging predictors[J].Machine Learning,1996,24(2):123-140. [19] WITTEN I H,FRANK E,HALL M A,et al.Data mining:practical machine learning tools and techniques[M].[S.l.]:Morgan Kaufmann,2016. [20] BIAU G.Analysis of a random forests model[EB/OL].[2019-08-02].https://arxiv.org/abs/1005.0208. |