1 |
HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 558-567.
|
2 |
HAJAVI A, ETEMAD A. Fine-grained early frequency attention for deep speaker recognition[C]//Proceedings of 2022 International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2022: 1-6.
|
3 |
WOLF T, DEBUT L, SANH V, et al. Transformers: state-of-the-art natural language processing[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. [S. l. ]: Association for Computational Linguistics, 2020: 38-45.
|
4 |
WANG Y S, MA X J, CHEN Z Y, et al. Symmetric cross entropy for robust learning with noisy labels[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 322-330.
|
5 |
DENG J K, GUO J, YANG J, et al. ArcFace: additive angular margin loss for deep face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (10): 5962- 5979.
doi: 10.1109/TPAMI.2021.3087709
|
6 |
LIU W, WEN Y, YU Z, et al. Large-margin Softmax loss for convolutional neural networks[C]//Proceedings of the 33rd International Conference on Machine Learning. New York, USA: ACM Press, 2016: 507-516.
|
7 |
|
8 |
WANG F, CHENG J, LIU W Y, et al. Additive margin Softmax for face verification. IEEE Signal Processing Letters, 2018, 25 (7): 926- 930.
doi: 10.1109/LSP.2018.2822810
|
9 |
ZHENG Q H, ZHU J H, LI Z Y, et al. Comprehensive multi-view representation learning. Information Fusion, 2023, 89, 198- 209.
doi: 10.1016/j.inffus.2022.08.014
|
10 |
KHAJWAL A B, CHENG C S, NOSHADRAVAN A. Post-disaster damage classification based on deep multi-view image fusion. Computer-Aided Civil and Infrastructure Engineering, 2023, 38 (4): 528- 544.
doi: 10.1111/mice.12890
|
11 |
REBUFFI S A, VEDALDI A, BILEN H. Efficient parametrization of multi-domain deep neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8119-8127.
|
12 |
WANG X B, ZHANG S F, LEI Z, et al. Ensemble soft-margin Softmax loss for image classification[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2018: 992-998.
|
13 |
HE L T, YUAN H R. Improved cross-entropy research based on JS divergence: Iris flower data as an example[C]//Proceedings of IEEE International Conference on Advances in Electrical Engineering and Computer Applications. Washington D. C., USA: IEEE Press, 2022: 1455-1459.
|
14 |
BREIMAN L. Random forests. Machine Learning, 2001, 45 (1): 5- 32.
doi: 10.1023/A:1010933404324
|
15 |
王开, 仇海涛, 石海洋. 基于BAS-BP-Bagging模型的光纤陀螺温度补偿. 半导体光电, 2023, 44 (4): 519- 524.
|
|
WANG K, QIU H T, SHI H Y. The temperature compensation method of fiber optic gyroscope based on BAS-BP-Bagging neural network. Semiconductor Optoelectronics, 2023, 44 (4): 519- 524.
|
16 |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 785-794.
|
17 |
FREUND Y, SCHAPIRE R E. Experiments with a new boosting algorithm[C]//Proceedings of the 20th International Conference on Machine Learning. New York, USA: ACM Press, 1996: 148-156.
|
18 |
CHEN Z, DUAN J, KANG L, et al. Class-imbalanced deep learning via a class-balanced ensemble. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (10): 5626- 5640.
doi: 10.1109/TNNLS.2021.3071122
|
19 |
LAKSHMINARAYANAN B, PRITZEL A, BLUNDELL C. Simple and scalable predictive uncertainty estimation using deep ensembles[EB/OL]. [2023-09-05]. https://arxiv.org/abs/1612.01474.
|
20 |
ZHANG S, LIU M, YAN J. The diversified ensemble neural network[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2020: 16001-16011.
|
21 |
SUREKHA G, KEERTHANA P S, VARMA N J, et al. Hybrid image classification model using ResNet101 and VGG16[C]//Proceedings of the 2nd International Conference on Applied Artificial Intelligence and Computing. Washington D. C., USA: IEEE Press, 2023: 729-734.
|
22 |
JIANG B B, XIANG J H, WU X Y, et al. Robust adaptive-weighting multi-view classification[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2021: 3117-3121.
|
23 |
KUMAR V, MINZ S. Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification. Knowledge and Information Systems, 2016, 49 (1): 1- 59.
doi: 10.1007/s10115-015-0875-y
|
24 |
SUN S, DONG W, LIU Q. Multi-view representation learning with deep Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (12): 4453- 4468.
doi: 10.1109/TPAMI.2020.3001433
|
25 |
WANG C L, LI C, WANG J. Two modified augmented Lagrange multiplier algorithms for Toeplitz matrix compressive recovery. Computers & Mathematics with Applications, 2017, 74 (8): 1915- 1921.
|
26 |
DUCHI J, SHALEV-SHWARTZ S, SINGER Y, et al. Efficient projections onto the l1-ball for learning in high dimensions[C]//Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM Press, 2008: 272-279.
|
27 |
CHANG B, MENG L L, HABER E, et al. Reversible architectures for arbitrarily deep residual neural networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1): 2811- 2818.
|
28 |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324.
doi: 10.1109/5.726791
|
29 |
KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images. Handbook of Systemic Autoimmune Diseases, 2009, 1 (4): 1- 60.
|
30 |
|
31 |
|
32 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
33 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 4700-4708.
|
34 |
SHEN Z Q, HE Z K, XUE X Y. MEAL: multi-model ensemble via adversarial learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 4886- 4893.
doi: 10.1609/aaai.v33i01.33014886
|
35 |
SINHA T, VERMA B. Convolutional ensemble network for image classification[C]//Proceedings of IEEE Symposium Series on Computational Intelligence. Washington D. C., USA: IEEE Press, 2022: 285-292.
|
36 |
WENZEL F, SNOEK J, TRAN D, et al. Hyperparameter ensembles for robustness and uncertainty quantification[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. California, USA: NIPS, 2020: 6514-6527.
|
37 |
|
38 |
LAVOIE M A, WASLANDER S L. Class instance balanced learning for long-tailed classification[C]//Proceedings of the 20th Conference on Robots and Vision. Washington D. C., USA: IEEE Press, 2023: 121-128.
|
39 |
|