1 |
BOHADANA A, IZBICKI G, KRAMAN S S. Fundamentals of lung auscultation. The New England Journal of Medicine, 2014, 370(8): 744- 751.
doi: 10.1056/NEJMra1302901
|
2 |
PRAMONO R X A, BOWYER S, RODRIGUEZ-VILLEGAS E. Automatic adventitious respiratory sound analysis: a systematic review. PLoS One, 2017, 12(5): e0177926.
doi: 10.1371/journal.pone.0177926
|
3 |
裴振伟, 朱平. 基于ICEEMDAN-MLP的肺音信号识别研究. 电子设计工程, 2021, 29(1): 96- 100.
URL
|
|
PEI Z W, ZHU P. Research on lung sound signal recognition based on ICEEMDAN-MLP. Electronic Design Engineering, 2021, 29(1): 96- 100.
URL
|
4 |
PRAMONO R X A, IMTIAZ S A, RODRIGUEZ-VILLEGAS E. Evaluation of features for classification of wheezes and normal respiratory sounds. PLoS One, 2019, 14(3): e0213659.
doi: 10.1371/journal.pone.0213659
|
5 |
MESSNER E, FEDIUK M, SWATEK P, et al. Multi-channel lung sound classification with convolutional recurrent neural networks. Computers in Biology and Medicine, 2020, 122, 103831.
doi: 10.1016/j.compbiomed.2020.103831
|
6 |
ROCHA B M, FILOS D, MENDES L, et al. Α respiratory sound database for the development of automated classification[C]//Proceedings of International Conference on Biomedical and Health Informatics. Berlin, Germany: Springer, 2018: 33-37.
|
7 |
SERBES G, ULUKAYA S, KAHYA Y P. An automated lung sound preprocessing and classification system based on spectral analysis methods[C]//Proceedings of International Conference on Biomedical and Health Informatics. Berlin, Germany: Springer, 2018: 45-49.
|
8 |
PERNA D, TAGARELLI A. Deep auscultation: predicting respiratory anomalies and diseases via recurrent neural networks[C]//Proceedings of the 32nd International Symposium on Computer-Based Medical Systems. Washington D. C., USA: IEEE Press, 2019: 50-55.
|
9 |
DEMIR F, ISMAEL A M, SENGUR A. Classification of lung sounds with CNN model using parallel pooling structure. IEEE Access, 2020, 8, 105376- 105383.
doi: 10.1109/ACCESS.2020.3000111
|
10 |
GEMMEKE J F, ELLIS D P W, FREEDMAN D, et al. Audio Set: an ontology and human-labeled dataset for audio events[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2017: 776-780.
|
11 |
张志超, 李晓燕. 基于VGGish网络的音频信息情感智能识别算法. 电子设计工程, 2022, 30(4): 26- 30.
URL
|
|
ZHANG Z C, LI X Y. Intelligent recognition algorithm of audio information emotion based on VGGish network. Electronic Design Engineering, 2022, 30(4): 26- 30.
URL
|
12 |
廖辉强. 基于语音帧自动标注和领域知识迁移的语音情感识别研究[D]. 广州: 华南理工大学, 2020.
|
|
LIAO H Q. Research on speech emotion recognition based on automatic labeling of speech frames and domain knowledge transfer[D]. Guangzhou: South China University of Technology, 2020. (in Chinese)
|
13 |
乔栋, 陈章进, 邓良, 等. 基于改进语音处理的卷积神经网络中文语音情感识别方法. 计算机工程, 2022, 48(2): 281- 290.
URL
|
|
QIAO D, CHEN Z J, DENG L, et al. Method for Chinese speech emotion recognition based on improved speech processing convolutional neural network. Computer Engineering, 2022, 48(2): 281- 290.
URL
|
14 |
陈敏, 王娆芬. 基于二维图像与迁移卷积神经网络的心律失常分类. 计算机工程, 2020, 46(10): 315- 320.
URL
|
|
CHEN M, WANG R F. Arrhythmia classification based on two-dimensional image and tranfer convolutional neural network. Computer Engineering, 2020, 46(10): 315- 320.
URL
|
15 |
张驰名, 王庆凤, 刘志勤, 等. 基于深度迁移学习的肺结节辅助诊断方法. 计算机工程, 2020, 46(1): 271- 278.
URL
|
|
ZHANG C M, WANG Q F, LIU Z Q, et al. Pulmonary nodule auxiliary diagnosis method based on deep transfer learning. Computer Engineering, 2020, 46(1): 271- 278.
URL
|
16 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11531-11539.
|
17 |
|
18 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
19 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. New York, USA: ACM Press, 2018: 3-19.
|
20 |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 785-794.
|
21 |
KE G L, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 3149-3157.
|
22 |
SHARMA N, KRISHNAN P, KUMAR R, et al. Coswara—a database of breathing, cough, and voice sounds for COVID-19 diagnosis[EB/OL]. [2022-04-10]. https://arxiv.org/abs/2005.10548.
|
23 |
DEMIR F, SENGUR A, BAJAJ V. Convolutional neural networks based efficient approach for classification of lung diseases. Health Information Science and Systems, 2020, 8(1): 104407.
|
24 |
MA Y, XU X Z, YU Q, et al. LungBRN: a smart digital stethoscope for detecting respiratory disease using bi-ResNet deep learning algorithm[C]//Proceedings of IEEE Biomedical Circuits and Systems Conference. Washington D. C., USA: IEEE Press, 2019: 1-4.
|
25 |
KOCHETOV K, PUTIN E, BALASHOV M, et al. Noise masking recurrent neural network for respiratory sound classification[C]//Proceedings of International Conference on Artificial Neural Networks. Berlin, Germany: Springer, 2018: 208-217.
|
26 |
ACHARYA J, BASU A. Deep neural network for respiratory sound classification in wearable devices enabled by patient specific model tuning. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14(3): 535- 544.
|
27 |
MA Y, XU X Z, LI Y F. LungRN+NL: an improved adventitious lung sound classification using non-local block ResNet neural network with mixup data augmentation[C]//Proceedings of Interspeech 2020. [S. l.]: ISCA, 2020: 2902-2906.
|
28 |
ZHAO X S, SHAO Y B, MAI J Y, et al. Respiratory sound classification based on BiGRU-attention network with XGBoost[C]//Proceedings of IEEE International Conference on Bioinformatics and Biomedicine. Washington D. C., USA: IEEE Press, 2021: 915-920.
|
29 |
NGUYEN T, PERNKOPF F. Lung sound classification using snapshot ensemble of convolutional neural networks[C]//Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Washington D. C., USA: IEEE Press, 2020: 760-763.
|
30 |
SONG W J, HAN J Q, SONG H W. Contrastive embedding learning method for respiratory sound classification[C]//Proceedings of 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2021: 1275-1279.
|