[1] AKKAR H A R, ALI W H.Estimation load forecasting based on the intelligent systems[J].Al-Nahrain Journal for Engineering Sciences, 2018, 21(2):285-291. [2] CHEN J, LI T, ZOU Y, et al.An ensemble feature selection method for short-term electrical load forecasting[C]//Proceedings of the 3rd Conference on Energy Internet and Energy System Integration.Washington D.C., USA:IEEE Press, 2019:231-241. [3] LANG K, ZHANG M Y, YUAN Y B, et al.Short-term load forecasting based on multivariate time series prediction and weighted neural network with random weights and kernels[J].Cluster Computing, 2018, 22(12):12589-12597. [4] JUAN C L, RIDER M J, WU Q, Parsimonious short-term load forecasting for optimal operation planning of electrical distribution systems[J].IEEE Transactions on Power Systems, 2019, 34(2):1427-1437. [5] BRACALE A, CARAMIA P, DE FALCO P, et al.Multivariate quantile regression for short-term probabilistic load forecasting[J].IEEE Transactions on Power Systems, 2020, 35(1):628-638. [6] 汤强, 谢明中, 罗元盛.基于SVR的用电负荷特征三维回归模型[J].计算机工程, 2017, 43(9):300-303, 309. TANG Q, XIE M Z, LU Y S.SVR based three dimensional regression model of power load characteristics[J].Computer Engineering, 2017, 43(9):300-303, 309.(in Chinese) [7] 郭艳飞, 程林, 李洪涛, 等.基于支持向量机和互联网信息修正的空间负荷预测方法[J].中国电力, 2019, 52(4):80-88. GUO Y F, CHENG L, LI H T, et al.Spatial load forecasting method based on support vector machine and internet information correction[J].Electric Power, 2019, 52(4):80-88.(in Chinese) [8] JIANG H, ZHANG Y, MULJADI E, et al.A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization[J].IEEE Transactions on Smart Grid, 2018, 9(4):3341-3350. [9] XU F Y, CUN X, YAN M, et al.Power market load forecasting on neural network with beneficial correlated regularization[J].IEEE Transactions on Industrial Informatics, 2018, 14(11):5050-5059. [10] 唐玮, 钟士元, 舒娇, 等.基于GRA-LSSVM的配电网空间负荷预测方法研究[J].电力系统保护与控制, 2018, 46(24):76-82. TANG W, ZHONG S Y, SHU J.Research on spatial load forecasting of distribution network based on GRA-LSSVM method[J].Power System Protection and Control, 2018, 46(24):76-82.(in Chinese) [11] 董浩, 李明星, 张淑清, 等.基于核主成分分析和极限学习机的短期电力负荷预测[J].电子测量与仪器学报, 2018, 32(1):188-193. DONG H, LI M X, ZHANG S Q, et al.Short-term power load forecasting based on kernel principal component analysis and extreme learning machine[J].Journal of Electronic Measurement and Instrument, 2018, 42(20):73-78.(in Chinese) [12] 罗育辉, 蔡延光, 戚远航, 等.基于最大偏差相似性准则的BP神经网络短期电力负荷预测算法[J].计算机应用研究, 2019, 36(11):3269-3273. LUO Y H, CAI Y G, QI Y H, et al.Short-term power load forecasting algorithm based on maximum deviation similarity criterion BP neural network[J].Application Research of Computers, 2019, 36(11):3269-3273.(in Chinese) [13] CHEN K, WANG Q, HE Z, et al.Short-term load forecasting with deep residual networks[J].IEEE Transactions on Smart Grid, 2019, 10(4):3943-3952. [14] GONG G, AN X, MAHATO N K, et al.Research on short-term load prediction based on seq2seq model[J].Energies, 2019, 12(16):3199-3205. [15] MA Y, ZHANG Q, DING J, et al.Short term load forecasting based on iForest-LSTM[C]//Proceedings of the 14th IEEE Conference on Industrial Electronics and Applications.Washington D.C., USA:IEEE Press, 2019:123-134. [16] 陆继翔, 张琪培, 杨志宏, 等.基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J].电力系统自动化, 2019, 43(8):131-137. LU J X, ZHANG Q P, YANG Z H, et al.Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J].Automation of Electric Power Systems, 2019, 43(8):131-137.(in Chinese) [17] 庄世杰, 於志勇, 郭文忠, 等.基于Zoneout的跨尺度循环神经网络及其在短期电力负荷预测中的应用[J].计算机科学, 2020, 47(9):105-109. ZHUANG S J, YU Z Y, GUO W Z, et al.Short term load forecasting via zoneout-based multi-time scale recurrent neural network[J].Computer Science, 2020, 47(9):105-109.(in Chinese) [18] TANG X L, DAI Y Y, WANG T, et al.Short-term power load forecasting based on multi-layer bidirectional recurrent neural network[J].IET Generation, Transmission and Distribution, 2019, 13(17):3847-3854. [19] 周雨佳, 窦志成, 葛松玮, 等.基于递归神经网络与注意力机制的动态个性化搜索算法[J].计算机学报, 2020, 43(5):812-826. ZHOU Y J, DOU Z C, GE S W, et al.Dynamic personalized search based on RNN with attention mechanism[J].Chinese Journal of Computers, 2020, 43(5):812-826.(in Chinese) [20] 杜圣东, 李天瑞, 杨燕, 等.一种基于序列到序列时空注意力学习的交通流预测模型[J].计算机研究与发展, 2020, 57(8):1715-1728. DU S D, LI T R, YANG Y, et al.A sequence-to-sequence spatial-temporal attention learning model for urban traffic flow prediction[J].Journal of Computer Research and Development, 2020, 57(8):1715-1728. [21] WANG Y, LIAO W, CHANG Y.Gated recurrent unit network-based short-term photovoltaic forecasting[J].Energies, 2018, 11(8):1-14. |