1 |
DING W B, LI L, ZHUANG X H, et al. Cross-modality multi-atlas segmentation using deep neural networks. Berlin, Germany: Springer, 2020.
|
2 |
CAO X H, YANG J H, WANG L, et al. Deep learning based inter-modality image registration supervised by intra-modality similarity[C]//Proceedings of International Conference on Machine Learning in Medical Imaging. Berlin, Germany: Springer, 2018: 55-63.
|
3 |
陈辰, 周拥军, 李元祥, 等. 基于U-Net分割与HEIV模型的遥感图像配准方法. 计算机工程, 2019, 45 (11): 249- 255.
doi: 10.19678/j.issn.1000-3428.0052166
|
|
CHEN C, ZHOU Y J, LI Y X, et al. Remote sensing image registration method based on U-Net segmentation and HEIV model. Computer Engineering, 2019, 45 (11): 249- 255.
doi: 10.19678/j.issn.1000-3428.0052166
|
4 |
王帅坤, 周志勇, 胡冀苏, 等. 基于深度学习的肝脏CT-MR图像无监督配准. 计算机工程, 2023, 49 (1): 223- 233.
doi: 10.19678/j.issn.1000-3428.0063999
|
|
WANG S K, ZHOU Z Y, HU J S, et al. Unsupervised registration of liver CT-MR images based on deep learning. Computer Engineering, 2023, 49 (1): 223- 233.
doi: 10.19678/j.issn.1000-3428.0063999
|
5 |
CHEN X A, XIA Y, RAVIKUMAR N, et al. A deep discontinuity-preserving image registration network[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2021: 46-55.
|
6 |
MAHAPATRA D, ANTONY B, SEDAI S M, et al. Deformable medical image registration using generative adversarial networks[C]//Proceedings of the 15th IEEE International Symposium on Biomedical Imaging. Washington D. C., USA: IEEE Press, 2018: 1449-1453.
|
7 |
FAN J F, CAO X H, WANG Q, et al. Adversarial learning for mono-or multi-modal registration. Medical Image Analysis, 2019, 58, 101545.
doi: 10.1016/j.media.2019.101545
|
8 |
XU Z, LUO J E, YAN J P, et al. Adversarial uni- and multi-modal stream networks for multimodal image registration[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2020: 222-232.
|
9 |
HEINRICH M P, JENKINSON M, BHUSHAN M, et al. MIND: modality independent neighbourhood descriptor for multi-modal deformable registration. Medical Image Analysis, 2012, 16 (7): 1423- 1435.
doi: 10.1016/j.media.2012.05.008
|
10 |
BLENDOWSKI M, HANSEN L, HEINRICH M P. Weakly-supervised learning of multi-modal features for regularised iterative descent in 3D image registration. Medical Image Analysis, 2021, 67, 101822.
doi: 10.1016/j.media.2020.101822
|
11 |
FERRANTE E, DOKANIA P K, SILVA R M, et al. Weakly supervised learning of metric aggregations for deformable image registration. IEEE Journal of Biomedical and Health Informatics, 2019, 23 (4): 1374- 1384.
doi: 10.1109/JBHI.2018.2869700
|
12 |
HU Y P, MODAT M, GIBSON E, et al. Weakly-supervised convolutional neural networks for multimodal image registration. Medical Image Analysis, 2018, 49, 1- 13.
doi: 10.1016/j.media.2018.07.002
|
13 |
HU Y P, MODAT M, GIBSON E, et al. Label-driven weakly-supervised learning for multimodal deformable image registration[C]//Proceedings of the 15th IEEE International Symposium on Biomedical Imaging. Washington D. C., USA: IEEE Press, 2018: 1070-1074.
|
14 |
DALCA A V, YU E, GOLLAND P, et al. Unsupervised deep learning for Bayesian brain MRI segmentation. Berlin, Germany: Springer, 2019: 356- 365.
|
15 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
16 |
ZHOU Z W, RAHMAN M M, TAJBAKHSH N, et al. U-Net++: a nested U-Net architecture for medical image segmentation. Berlin, Germany: Springer, 2018: 3- 11.
|
17 |
林志洁, 郑秋岚, 梁涌, 等. 基于内卷U-Net的医学图像分割模型. 计算机工程, 2022, 48 (8): 180- 186.
URL
|
|
LIN Z J, ZHENG Q L, LIANG Y, et al. Medical image segmentation model based on involution U-Net. Computer Engineering, 2022, 48 (8): 180- 186.
URL
|
18 |
LI C Z, DONG L, DOU Q, et al. Self-ensembling co-training framework for semi-supervised COVID-19 CT segmentation. IEEE Journal of Biomedical and Health Informatics, 2021, 25 (11): 4140- 4151.
doi: 10.1109/JBHI.2021.3103646
|
19 |
LI B, NIESSEN W J, KLEIN S, et al. A hybrid deep learning framework for integrated segmentation and registration: evaluation on longitudinal white matter tract changes. Berlin, Germany: Springer, 2019: 645- 653.
|
20 |
BITARAFAN A, NIKDAN M, BAGHSHAH M S. 3D image segmentation with sparse annotation by self-training and internal registration. IEEE Journal of Biomedical and Health Informatics, 2021, 25 (7): 2665- 2672.
doi: 10.1109/JBHI.2020.3038847
|
21 |
SHAO W, BHATTACHARYA I, SOERENSEN S J C, et al. Weakly supervised registration of prostate MRI and histopathology images[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2021: 98-107.
|
22 |
ZHOU B, AUGENFELD Z, CHAPIRO J, et al. Anatomy-guided multimodal registration by learning segmentation without ground truth: application to intraprocedural CBCT/MR liver segmentation and registration. Medical Image Analysis, 2021, 71, 102041.
doi: 10.1016/j.media.2021.102041
|
23 |
LI B, NIESSEN W J, KLEIN S, et al. Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration. NeuroImage, 2021, 235, 118004.
doi: 10.1016/j.neuroimage.2021.118004
|
24 |
吕凯, 吴军. 基于B样条和水平集方法的医学图像联合分割与配准. 激光与光电子学进展, 2020, 57 (10): 101007.
URL
|
|
LÜ K, WU J. Joint segmentation and registration of medical image based on B-spline and level set method. Laser & Optoelectronics Progress, 2020, 57 (10): 101007.
URL
|
25 |
ESTIENNE T, VAKALOPOULOU M, CHRISTODOULIDIS S, et al. U-ReSNet: ultimate coupling of registration and segmentation with deep nets[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2019: 310-319.
|
26 |
ELMAHDY M S, BELJAARDS L, YOUSEFI S, et al. Joint registration and segmentation via multi-task learning for adaptive radiotherapy of prostate cancer. IEEE Access, 2021, 9, 95551- 95568.
doi: 10.1109/ACCESS.2021.3091011
|
27 |
XU Z L, NIETHAMMER M. DeepAtlas: joint semi-supervised learning of image registration and segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2019: 420-429.
|
28 |
QIU L, REN H L. U-RSNet: an unsupervised probabilistic model for joint registration and segmentation. Neurocomputing, 2021, 450, 264- 274.
doi: 10.1016/j.neucom.2021.04.042
|
29 |
QIU L, REN H L. RSegNet: a joint learning framework for deformable registration and segmentation. IEEE Transactions on Automation Science and Engineering, 2022, 19 (3): 2499- 2513.
doi: 10.1109/TASE.2021.3087868
|
30 |
|
31 |
ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel 'squeeze & excitation' in fully convolutional networks[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2018: 421-429.
|
32 |
ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 2021, 18 (2): 203- 211.
|
33 |
KIM S, MIN D B, LIN S, et al. Dense cross-modal correspondence estimation with the deep self-correlation descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (7): 2345- 2359.
doi: 10.1109/TPAMI.2020.2965528
|
34 |
SHECHTMAN E, IRANI M. Matching local self-similarities across images and videos[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2007: 1-8.
|
35 |
HEINRICH M P, JENKINSON M, PAPIEŻ B W, et al. Towards realtime multimodal fusion for image-guided interventions using self-similarities[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2013: 187-194.
|
36 |
YANG H R, SUN J, CARASS A, et al. Unsupervised MR-to-CT synthesis using structure-constrained CycleGAN. IEEE Transactions on Medical Imaging, 2020, 39 (12): 4249- 4261.
|
37 |
KLEIN S, STARING M, MURPHY K, et al. Elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging, 2010, 29 (1): 196- 205.
|
38 |
BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: a learning framework for deformable medical image registration. IEEE Transactions on Medical Imaging, 2019, 38 (8): 1788- 1800.
|
39 |
CICEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2016: 424-432.
|