1 |
ZHOU X Y, ZAFARANI R, SHU K, et al. Fake news: fundamental theories, detection strategies and challenges[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2019: 836-837.
|
2 |
KWON S, CHA M, JUNG K, et al. Prominent features of rumor propagation in online social media[C]//Proceedings of 2013 IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2013: 1103-1108.
|
3 |
ZHAO Z Y, ZHU H Y, XUE Z H, et al. An image-text consistency driven multimodal sentiment analysis approach for social media. Information Processing & Management, 2019, 56 (6): 102097.
doi: 10.1016/j.ipm.2019.102097
|
4 |
段大高, 白宸宇, 韩忠明, 等. 基于多传递影响力的社交媒体谣言检测方法. 计算机工程, 2022, 48 (10): 138-145, 157.
URL
|
|
DUAN D G, BAI C Y, HAN Z M, et al. Social media rumor detection method based on multi-transmission influence. Computer Engineering, 2022, 48 (10): 138-145, 157.
URL
|
5 |
QI P, CAO J A, YANG T Y, et al. Exploiting multi-domain visual information for fake news detection[C]//Proceedings of 2019 IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2019: 518-527.
|
6 |
陶霄, 朱焱, 李春平. 基于注意力与多模态混合融合的谣言检测方法. 计算机工程, 2021, 47 (12): 71- 77.
URL
|
|
TAO X, ZHU Y, LI C P. Rumor detection method based on attention and multi-modal hybrid fusion. Computer Engineering, 2021, 47 (12): 71- 77.
URL
|
7 |
RUCHANSKY N, SEO S, LIU Y. CSI: a hybrid deep model for fake news detection[C]//Proceedings of 2017 ACM Conference on Information and Knowledge Management. New York, USA: ACM Press, 2017: 797-806.
|
8 |
|
9 |
GU Y, YANG K N, FU S Y, et al. Multimodal affective analysis using hierarchical attention strategy with word-level alignment[C]//Proceedings of Annual Meeting of the Association for Computational Linguistics. New York, USA: ACM Press, 2018: 2225-2235.
|
10 |
MA J, GAO W, WONG K F. Detect rumors on Twitter by promoting information campaigns with generative adversarial learning[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 3049-3055.
|
11 |
ZHOU K, SHU C, LI B, et al. Early rumour detection[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 1614-1623.
|
12 |
CHEN Y X, SUI J, HU L, et al. Attention-residual network with CNN for rumor detection[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 1121-1130.
|
13 |
ERHAN D, COURVILLE A, BENGIO Y, et al. Why does unsupervised pre-training help deep learning?[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. [S. l.]: JMLR, 2010: 201-208.
|
14 |
|
15 |
YANG F, LIU Y, YU X H, et al. Automatic detection of rumor on Sina Weibo[C]//Proceedings of ACM SIGKDD Workshop on Mining Data Semantics. New York, USA: ACM Press, 2012: 1-7.
|
16 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks. Communications of the ACM, 2020, 63 (11): 139- 144.
doi: 10.1145/3422622
|
17 |
GU Y, YANG K N, FU S Y, et al. Hybrid attention based multimodal network for spoken language classification[C]//Proceedings of Annual Meeting of the Association for Computational Linguistics. New York, USA: ACM Press, 2018: 2379-2390.
|
18 |
PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2014: 1532-1543.
|
19 |
|
20 |
FLORIDI L, CHIRIATTI M. GPT-3: its nature, scope, limits, and consequences. Minds and Machines, 2020, 30 (4): 681- 694.
doi: 10.1007/s11023-020-09548-1
|
21 |
PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. USA: IEEE Press, 2016: 2536-2544.
|
22 |
|
23 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
24 |
ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2016: 207-212.
|
25 |
SONG C G, NING N W, ZHANG Y L, et al. A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks. Information Processing & Management, 2021, 58 (1): 102437.
doi: 10.1016/j.ipm.2020.102437
|
26 |
LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1 (4): 541- 551.
doi: 10.1162/neco.1989.1.4.541
|
27 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
28 |
|
29 |
WANG Y Q, MA F L, JIN Z W, et al. EANN: event adversarial neural networks for multi-modal fake news detection[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, Press, 2018: 849-857.
|
30 |
CAI Y T, CAI H Y, WAN X J. Multi-modal sarcasm detection in Twitter with hierarchical fusion model[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 2506-2515.
|