1 |
HYUNA S, JACQUES F, SIEGEL REBECCA L, et al. Global cancer statistics 2020;GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA; A Cancer Journal for Clinicians, 2021, 71 (3): 209- 249.
doi: 10.3322/caac.21660
|
2 |
KUMAR Y, GUPTA S, SINGLA R, et al. A systematic review of artificial intelligence techniques in cancer prediction and diagnosis. Archives of Computational Methods in Engineering, 2022, 29 (4): 2043- 2070.
doi: 10.1007/s11831-021-09648-w
|
3 |
LÜÖND F, TIEDE S, CHRISTOFORI G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. British Journal of Cancer, 2021, 125 (2): 164- 175.
doi: 10.1038/s41416-021-01328-7
|
4 |
ALLEMANI C, MATSUDA T, DI CARLO V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3);analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. The Lancet, 2018, 391 (10125): 1023- 1075.
doi: 10.1016/S0140-6736(17)33326-3
|
5 |
KONONENKO I. Machine learning for medical diagnosis; history, state of the art and perspective. Artificial Intelligence in Medicine, 2001, 23 (1): 89- 109.
doi: 10.1016/S0933-3657(01)00077-X
|
6 |
GUPTA S, GUPTA M K. A comprehensive data-level investigation of cancer diagnosis on imbalanced data. Computational Intelligence, 2022, 38 (1): 156- 186.
doi: 10.1111/coin.12452
|
7 |
COX D R. Regression models and life-tables. Journal of the Royal Statistical Society; Series B (Methodological), 1972, 34 (2): 187- 202.
doi: 10.1111/j.2517-6161.1972.tb00899.x
|
8 |
ZHAO M, TANG Y S, KIM H, et al. Machine learning with K-means dimensional reduction for predicting survival outcomes in patients with breast cancer. Cancer informatics, 2018, 9, 1- 10.
doi: 10.1177/1176935118810215
|
9 |
GOLI S, MAHJUB H, FARADMAL J, et al. Survival prediction and feature selection in patients with breast cancer using support vector regression. Computational and Mathematical Methods in Medicine, 2016, 2016, 1- 12.
doi: 10.1155/2016/2157984
|
10 |
ABDIKENOV B, IKLASSOV Z, SHARIPOV A, et al. Analytics of heterogeneous breast cancer data using neuroevolution. IEEE Access, 2019, 7, 18050- 18060.
doi: 10.1109/ACCESS.2019.2897078
|
11 |
OLIVIER G, FRANK D S, DIRK T, et al. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics, 2006, 22 (14): 184- 190.
doi: 10.1093/bioinformatics/btl230
|
12 |
KIM J, SHIN H. Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data. Journal of the American Medical Informatics Association, 2013, 20 (4): 613- 618.
doi: 10.1136/amiajnl-2012-001570
|
13 |
PARK K, ALI A, KIM D, et al. Robust predictive model for evaluating breast cancer survivability. Engineering Applications of Artificial Intelligence, 2013, 26 (9): 2194- 2205.
doi: 10.1016/j.engappai.2013.06.013
|
14 |
SIMSEK S, KURSUNCU U, KIBIS E, et al. A hybrid data mining approach for identifying the temporal effects of variables associated with breast cancer survival. Expert Systems With Applications, 2020, 139, 112863.
doi: 10.1016/j.eswa.2019.112863
|
15 |
李佩, 陈乔松, 陈鹏昌, 等. 基于模态特异及模态共享特征信息的多模态细粒度检索. 计算机工程, 2022, 48 (11): 62-68, 76.
URL
|
|
LI P, CHEN Q S, CHEN P C, et al. Multi-modal fine-grained retrieval based on modal specific and modal shared feature information. Computer Engineering, 2022, 48 (11): 62-68, 76.
URL
|
16 |
BALTRUSAITIS T, AHUJA C, MORENCY L P. Multimodal machine learning; a survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (2): 423- 443.
doi: 10.1109/TPAMI.2018.2798607
|
17 |
王安志, 任春洪, 何淋艳, 等. 基于多模态多级特征聚合网络的光场显著性目标检测. 计算机工程, 2022, 48 (7): 227-233, 240.
URL
|
|
WANG A Z, REN C H, HE L Y, et al. Light field salient object detection based on multi-modal multi-level feature aggregation network. Computer Engineering, 2022, 48 (7): 227-233, 240.
URL
|
18 |
DILAWARI A, KHAN M U G. ASoVS: abstractive summarization of video sequences. IEEE Access, 2019, 7, 29253- 29263.
doi: 10.1109/ACCESS.2019.2902507
|
19 |
ZARBAKHSH P, DEMIREL H. 4D facial expression recognition using multimodal time series analysis of geometric landmark-based deformations. The Visual Computer, 2020, 36 (5): 951- 965.
doi: 10.1007/s00371-019-01705-7
|
20 |
FATEMEH B, MOHAMMAD S A. An overview of deep learning methods for multimodal medical data mining. Expert Systems With Applications, 2022, 200, 117006.
doi: 10.1016/j.eswa.2022.117006
|
21 |
朱婷, 王瑜, 肖洪兵, 等. 基于WRN-PPNet的多模态MRI脑肿瘤全自动分割. 计算机工程, 2018, 44 (12): 258-263, 270.
doi: 10.3778/j.issn.1002-8331.1701-0225
|
|
ZHU T, WANG Y, XIAO H B, et al. Automatic segmentation of multimodal MRI brain tumors based on WRN-PPNet. Computer Engineering, 2018, 44 (12): 258-263, 270.
doi: 10.3778/j.issn.1002-8331.1701-0225
|
22 |
|
23 |
XU Y. Deep learning in multimodal medical image analysis[C]//Proceedings of International Conference on Health Information Science. Berlin, Germany: Springer, 2019: 193-200.
|
24 |
GULLO R L, DAIMIEL I, MORRIS E A, et al. Combining molecular and imaging metrics in cancer; radiogenomics. Insights into imaging, 2020, 11 (1): 1- 17.
doi: 10.1186/s13244-019-0795-6
|
25 |
BAYOUDH K, KNANI R, HAMDAOUI F, et al. A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. The Visual Computer, 2022, 38 (8): 2939- 2970.
doi: 10.1007/s00371-021-02166-7
|
26 |
WANG W Y, TRAN D, FEISZLI M. What makes training multi-modal classification networks hard?[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 12695-12705.
|
27 |
|
28 |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958.
doi: 10.5555/2627435.2670313
|
29 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA; IEEE Press, 2017: 2980-2988.
|
30 |
CURTIS C, GROUP M, SHAH S P, et al. The genomic and transcriptomic architecture of 2, 000 breast tumours reveals novel subgroups. Nature, 2012, 486 (7403): 346- 352.
doi: 10.1038/nature10983
|
31 |
CIRIELLO G, GATZA M L, BECK A H, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell, 2015, 163 (2): 506- 519.
doi: 10.1016/j.cell.2015.09.033
|
32 |
LIU J F, LICHTENBERG T, HOADLEY K A, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell, 2018, 173 (2): 400- 416.
doi: 10.1016/j.cell.2018.02.052
|
33 |
KRASKOV A, STÖGBAUER H, GRASSBERGER P. Estimating mutual information. Physical Review E, 2004, 69 (6): 066138.
doi: 10.1103/PhysRevE.69.066138
|
34 |
KURSA M B, RUDNICKI W R. Feature selection with theBorutaPackage. Journal of Statistical Software, 2010, 36 (11): 1- 10.
doi: 10.18637/jss.v036.i11
|
35 |
LI F, YANG Y M. Analysis of recursive feature elimination methods[C]//Proceedings of the 28th annual International ACM SIGIR Conference on Research and Development in Information retrieval. New York, USA: ACM Press, 2005: 633-634.
|
36 |
LI Q Q, YANG H, WANG P P, et al. XGBoost-based and tumor-immune characterized gene signature for the prediction of metastatic status in breast cancer. Journal of Translastional Medicine, 2022, 20 (1): 1- 12.
doi: 10.1186/s12967-021-03207-4
|
37 |
PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost; unbiased boosting with categorical features[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2018: 6639-6649.
|