作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (4): 13-20. doi: 10.19678/j.issn.1000-3428.0058323

• 热点与综述 • 上一篇    下一篇

面向车联网的多智能体强化学习边云协同卸载

叶佩文1, 贾向东2, 杨小蓉1, 牛春雨1   

  1. 1. 西北师范大学 计算机科学与工程学院, 兰州 730070;
    2. 南京邮电大学 江苏省无线通信重点实验室, 南京 214215
  • 收稿日期:2020-05-14 修回日期:2020-06-26 发布日期:2020-07-17
  • 作者简介:叶佩文(1993-),男,硕士研究生,主研方向为车联网通信、移动边缘计算;贾向东,教授、博士;杨小蓉、牛春雨,硕士研究生。
  • 基金资助:
    国家自然科学基金(61861039,61561043,61261015);甘肃省科技计划“无人机关键技术研究”(18YF1GA060)。

Collaborative Edge and Cloud Offloading for Internet of Vehicles Using Multi-Agent Reinforcement Learning

YE Peiwen1, JIA Xiangdong2, YANG Xiaorong1, NIU Chunyu1   

  1. 1. College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China;
    2. Wireless Communication Key Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 214215, China
  • Received:2020-05-14 Revised:2020-06-26 Published:2020-07-17

摘要: 车联网边缘计算是实现车联网系统低时延和高可靠性的关键技术,但现有方法普遍存在场景趋同和系统建模局限的问题,同时包含复杂的训练过程并面临维灾风险。通过结合云计算技术,提出一种基于多智能体强化学习的边云协同卸载方案。依据随机几何理论计算卸载节点覆盖概率,对车辆节点与卸载对象进行预配对。利用线性Q函数分解方法反映每个智能体多效用因子与任务决策间的映射关系,通过云端协同机制将智能体决策记录作为经验上传到云端,并在云端将训练更完备的神经网络反馈到边缘节点。仿真结果表明,该方案在功耗和延时方面性能优于单一固定边缘的计算策略,且算法复杂度较低,能够有效提升边云协同卸载能力,实现低时延、高可靠的任务卸载。

关键词: 车联网, 多智能体强化学习, 随机几何理论, 边云协同计算, 任务卸载策略, 资源分配

Abstract: Edge computing for Internet of Vehicles(IoV) is key to realizing highly reliable and low-latency IoV systems.However,existing methods generally have the problems of scene convergence and system modeling limitations,and are faced with complex training processes and disaster maintenance risks.By combining the cloud computing technology,this paper proposes a collaborative edge and cloud offloading scheme based on multi-agent reinforcement learning.The strategy uses the stochastic geometry theory to calculate the coverage probability of the offloading nodes and pre-match the vehicular nodes to offloading objects.On this basis,the linear Q function decomposition method is used to reflect the mapping relationship between each agent's multi-utility factor and task decision.Then through the collaborative cloud and edge computing mech anism,each agent's decision records are uploaded to the cloud as experience,and the more comprehensively trained neural network is returned to the edge nodes.The results of simulation show that the proposed scheme outperforms the computing strategies using only fixed edge servers in terms of power consumption and latency.The method reduces the algorithm complexity,and can significantly improve the collaborative edge and cloud offloading ability to realize highly reliable and low-latency task offloading.

Key words: Internet of Vehicles(IoV), multi-agent reinforcement learning, stochastic geometry theory, collaborative edge and cloud computing, task offloading strategy, resource allocation

中图分类号: