[1] ZHANG L,LIANG Y C,NIYATO D.6G visions:mobile ultra-broadband,super Internet-of-things,and artificial intelligence[J].China Communications,2019,16(8):1-14. [2] YANG Xiaodong,PEI Xizhen,AN Faying,et al.Message authentication scheme for vehicular ad hoc network using identity-based aggregate signature[J].Computer Engineering,2020,46(2):170-174,182.(in Chinese)杨小东,裴喜祯,安发英,等.基于身份聚合签名的车载自组网消息认证方案[J].计算机工程,2020,46(2):170-174,182. [3] CHANG Xiang,ZHANG Rongqing,YANG Liuqing.Wireless toward the era of intelligent vehicles[J].IEEE Internet of Things Journal,2019,6(1):188-202. [4] ZHOU Huan,WANG Hui,CHEN Xi.Data offloading techniques through vehicular ad hoc networks:a survey[J].IEEE Access,2018,6:65250-65259. [5] YE Peiwen,JIA Xiangdong,YANG Xiaorong,et al.End-to-end physical layer optimization scheme using auto-encoder based on deep learning[J].Computer Engineering,2019,45(12):86-90,97.(in Chinese)叶佩文,贾向东,杨小蓉,等.基于深度学习的自编码器端到端物理层优化方案[J].计算机工程,2019,45(12):86-90,97. [6] ZHANG Ke,MAO Yuming,LENG Supeng,et al.Mobile-edge computing for vehicular networks:a promising network paradigm with predictive off-loading[J].IEEE Vehicular Technology Magazine,2017,12(2):36-44. [7] NING Zhaolong,DONG Peiran,WANG Xiaojie,et al.Deep reinforcement learning for intelligent Internet of vehicles:an energy-efficient computational offloading scheme[J].IEEE Transactions on Cognitive Communica-tions and Networking,2019,5(4):1060-1072. [8] XIE Shuai.A review of deep learning and intensive learning[J].Information Technology & Informatization,2020(5):225-227.(in Chinese)解帅.深度学习和深度强化学习综述[J].信息技术与信息化,2020(5):225-227. [9] YANG Chao,LIU Yi,CHEN Xin.Efficient mobility aware task offloading for vehicular edge computing networks[J].IEEE Access,2019,7:26652-26664. [10] CUI Yaping,LIANG Yingjie,WANG Ruyan.Resource allocation algorithm with multi-platform intelligent offloading in D2D-enabled vehicular networks[J].IEEE Access,2019,7:21246-21253. [11] LI Baozhu,ZHAO Xuhui.New SDN-based architecture for integrated vehicular cloud computing network[C]//Proceedings of 2018 IEEE International Conference on Selected Topics in Mobile and Wireless Networking.Washington D.C.,USA:IEEE Press,2018:1-4. [12] KING D,ROTSOS C,AGUADO A,et al.The software defined transport network:fundamentals,findings and futures[C]//Proceedings of International Conference on Transparent Optical Networks.Washington D.C.,USA:IEEE Press,2016:1-4. [13] DAI Y Y,XU D,MAHARJAN S,et al.Artificial intelligence empowered edge computing and caching for Internet of vehicles[J].IEEE Wireless Communications,2019,26(3):12-18. [14] REJIBA Z,MASIP-BRUIN X.Computation task assignment in vehicular fog computing:a learning approach via neighbor advice[C]//Proceedings of the 18th International Symposium on Network Computing and Applications.Washington D.C.,USA:IEEE Press,2019:1-5. [15] HOU Xueshi,LI Yong,CHEN Min,et al.Vehicular fog computing:a viewpoint of vehicles as the infrastructures[J].IEEE Transactions on Vehicular Technology,2016,65(6):3860-3873. [16] ALTHAMARY I,HUANG C W,LIN P.A survey on multi-agent reinforcement learning methods for vehicular networks[C]//Proceedings of the 15th International Wireless Communications and Mobile Computing Conference.Washington D.C.,USA:IEEE Press,2019:1154-1159. [17] LIU Yi,YU Huimin,XIE Shengli.Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks[J].IEEE Transactions on Vehicular Technology,2019,68(11):11158-11168. [18] YANG H L,XIE X Z,KADOCH M.Intelligent resource management based on reinforcement learning for ultra-reliable and low-latency IoV communication networks[J].IEEE Transactions on Vehicular Technology,2019,68(5):4157-4169. [19] HE Yin,ZHAO Nan,YIN Hongxi.Integrated networking,caching,and computing for connected vehicles:a deep reinforcement learning approach[J].IEEE Transactions on Vehicular Technology,2018,67(1):44-55. [20] TAN L T,HU R Q,HANZO L.Twin-timescale artificial intelligence aided mobility-aware edge caching and computing in vehicular networks[J].IEEE Transactions on Vehicular Technology,2019,68(4):3086-3099. [21] CHEN X F,WU C,ZHANG H G,et al.Decentralized deep reinforcement learning for delay-power tradeoff in vehicular communications[C]//Pro-ceedings of International Conference on Communications.Washington D.C.,USA:IEEE Press,2019:1-6. [22] CHOI C S,BACCELLI F.Poisson cox point processes for vehicular networks[J].IEEE Transactions on Vehicular Technology,2018,67(10):10160-10165. [23] CHOI C,BACCELLI F.An analytical framework for coverage in cellular networks leveraging vehicles[J].IEEE Transactions on Communications,2018,66(10):4950-4964. |