[1] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2012:1097-1105. [2] TRUDEAU R J.Introduction to graph theory[M].Upper Saddle River,USA:Prentice Hall,1996. [3] WANG Xin,XU Qiang,CHAI Lele,et al.Efficient distributed query processing on large scale RDF graph data[J].Journal of Software,2019,30(3):498-514.(in Chinese)王鑫,徐强,柴乐乐,等.大规模RDF图数据上高效率分布式查询处理[J].软件学报,2019,30(3):498-514. [4] WANG Chengbin,MA Xiaogang,CHEN Jianguo,et al.Information extraction and knowledge graph construction from geoscience literature[J].Computers & Geosciences,2018,112:112-120. [5] WANG Xin,ZOU Lei,WANG Chaokun,et al.Research on knowledge graph data management:a survey[J].Journal of Software,2019,30(7):2139-2174.(in Chinese)王鑫,邹磊,王朝坤,等.知识图谱数据管理研究综述[J].软件学报,2019,30(7):2139-2174. [6] WANG Xin,CHEN Weixue,YANG Yajun,et al.Research on knowledge graph partitioning algorithms:a survey[J].Chinese Journal of Computers,2021,44(1):236-259.(in Chinese)王鑫,陈蔚雪,杨雅君,等.知识图谱划分算法研究综述[J].计算机学报,2021,44(1):236-259. [7] WANG Xin,FU Qiang,WANG Lin,et al.Survey on visualization query technology of knowledge graph[J].Computer Engineering,2020,46(6):1-11.(in Chinese)王鑫,傅强,王林,等.知识图谱可视化查询技术综述[J].计算机工程,2020,46(6):1-11. [8] LI Zhongfei,YANG Yajun,WANG Xin.Rule based shortest path query algorithm[J].Journal of Software,2019,30(3):515-536.(in Chinese)李忠飞,杨雅君,王鑫.基于规则的最短路径查询算法研究[J].软件学报,2019,30(3):515-536. [9] MOHAMMAD A H,VACHIK S D.Triangle counting in large networks:a review[EB/OL].[2020-04-12].https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1226. [10] BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral net-works and locally connected networks on graphs[EB/OL].[2020-04-12].https://arxiv.org/abs/1312.6203. [11] DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[EB/OL].[2020-04-12].https://arxiv.org/abs/1606.09375. [12] BATTAGLIA P W.Relational inductive biases,deep learning,and graph networks[EB/OL].[2020-04-12].https://arxiv.org/abs/1806.01261v3. [13] ZHANG Ziwei,CUI Peng,ZHU Wenwu.Deep learning on graphs:a survey[EB/OL].[2020-04-12].https://ieeexplore.ieee.org/document/9039675. [14] ZHOU Jie,CUI Ganqu,ZHANG Zhengyan,et al.Graph neural networks:a review of methods and applications[EB/OL].[2020-04-12].https://arxiv.org/abs/1812.08434. [15] WU Zonghan,PAN Shirui,CHEN Fengwen,et al.A comprehensive survey on graph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):4-21. [16] MATHIAS N,AHMED M,KUTZKOV K.Learning convolutional neural networks for graphs[C]//Proceedings of the 33rd International Conference on Machine Learning.New York,USA:ACM Press 2016:2014-2023. [17] KAMPFFMEYER M,CHEN Y,LIANG X,et al.Rethink-ing knowledge graph propagation for zero-shot learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:11479-11488. [18] DUAN Dongsheng,LI Yuhua,JIN Yanan,et al.Community mining on dynamic weighted directed graphs[C]//Proceedings of the 1st ACM International Workshop on Complex Networks Meet Information & Knowledge Management.New York,USA:ACM Press,2009:11-18. [19] BECK D,HAFFARI G,COHN T.Graph-to-sequence learning using gated graph neural networks[EB/OL].[2020-04-12].http://arxiv.org/abs/1806.09835. [20] ZHANG Yizhou,XIONG Yun,KONG Xiangnan,et al.Deep collective classification in heterogeneous information networks[C]//Proceedings of 2018 World Wide Web Conference.New York,USA:ACM Press,2018:399-408. [21] YAO Huaxu,ZHANG Chuxu,WEI Ying,et al.Graph few-shot learning via knowledge transfer[EB/OL].[2020-04-12].http://arxiv.org/abs/1910.03053v1. [22] YAN Sijie,XIONG Yuanjun,LIN Dahua.Spatial temporal graph convolutional networks for skeleton-based action recognition[J].Journal of Electronic Imaging,2019,28(4):1-10. [23] YOU Renchuan,GUO Zhiyao,CUI Lei,et al.Cross-modality attention with semantic graph embedding for multi-label classification[EB/OL].[2020-04-12].https://arxiv.org/abs/1912.07872v1. [24] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [25] VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[EB/OL].[2020-04-12].https://arxiv.org/abs/1710.10903v3. [26] TIAN Fei,GAO Bin,CUI Qing,et al.Learning deep representations for graph clustering[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.Palo Alto,USA:AAAI Press,2014:1293-1299. [27] HUANG Yujun,WENG Yunpeng,YU Shuai,et al.Diffusion convolutional recurrent neural network:data-driven traffic forecasting[C]//Proceedings of IEEE International Conference on Trust,Security and Privacy in Computing and Communications.Washington D.C.,USA:IEEE Press,2018:25-38. [28] CAI H,ZHENG V W,CHANG K C C.A comprehensive survey of graph embedding:problems,techniques,and applications[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(9):1616-1637. [29] KIPF T N,MAX W.Semi-supervised classification with graph convolutional networks[EB/OL].[2020-04-12].https://arxiv.org/abs/1609.02907. [30] HENAFF M,BRUNA J,LECUN Y.Deep convolutional networks on graph-structured data[EB/OL].[2020-04-12].https://arxiv.org/abs/1506.05163. [31] ZHANG Xiongtong,LIU Han,LI Qimai,et al.Attributed graph clustering via adaptive graph convolution[EB/OL].[2020-04-12].https://arxiv.org/abs/1906.01210. [32] SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE Transactions on Neural Networks,2009,20(1):61-80. [33] DAI H,KOZAREVA Z,DAI B,et al.Learning steady-states of iterative algorithms over graphs[C]//Proceedings of International Conference on Machine Learning.Washington D.C.,USA:IEEE Press,2018:1114-1122. [34] ATWOOD J,TOWSLEY D.Diffusion-convolutional neural networks[C]//Proceedings of Advances in Neural Information Processing Systems.Washington D.C.,USA:IEEE Press,2016:1993-2001. [35] ZHUANG Chenyi,MA Qiang.Dual graph convolutional networks for graph-based semi-supervised classifica-tion[C]//Proceedings of 2018 Conference on World Wide Web.New York,USA:ACM Press,2018:499-508. [36] HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2017:1024-1034. [37] GILMER J,SCHOENHOLZ S S,RILEY P F,et al.Neural message passing for quantum chemistry[C]//Proceedings of International Conference on Machine Learning.New York,USA:ACM Press,2017:1263-1272. [38] LI Ruoyu,WANG Sheng,ZHU Feiyun,et al.Adaptive graph convolutional neural networks[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto,USA:AAAI Press,2018:3546-3553. [39] KEARNES S,MCCLOSKEY K.BERNDL M,et al.Molecular graph convolutions:moving beyond finger-prints[J].Journal of Computer-Aided Molecular Design,2016,30(8):595-608. [40] YING R,HE R,CHEN K,et al.Graph convolutional neural networks for Web-scale recommender systems[EB/OL].[2020-04-12].https://arxiv.org/abs/1806.01973. [41] CHEN Jie,MA Tengfei,XIAO Cao.FastGCN:fast learning with graph convolutional networks via importance sampling[EB/OL].[2020-04-12].https://arxiv.org/abs/1801.10247. [42] ABU-EL-HAIJA S,PEROZZI B,KAPOOR A,et al.MixHop:higher-order graph convolutional architectures via sparsified neighborhood mixing[EB/OL].[2020-04-12].https://arxiv.org/abs/1905.00067. [43] LI Y,TARLOW D,BROCKSCHMIDT M,et al.Gated graph sequence neural networks[EB/OL].[2020-04-12].https://arxiv.org/abs/1511.05493. [44] TAI K S,SOCHER R,MANNING C D.Improved semantic representations from tree-structured long short-term memory networks[C]//Proceedings of IJCNLP'15.New York,USA:ACM Press,2015:1556-1566. [45] YOU J,YING R,REN X,et al.GraphRNN:generating realistic graphs with deep auto-regressive models[C]//Proceedings of International Conference on Machine Learning.New York,USA:ACM Press,2018:5694-5703. [46] PENG N,POON H,QUIRK C,et al.Cross-sentence N-ary relation extraction with graph LSTMs[J].Transactions of the Association for Computational Linguistics,2017,5:101-115. [47] MA Yao,GUO Ziyi,REN Zhaochun,et al.Dynamic graph neural networks[EB/OL].[2020-04-12].https://arxiv.org/abs/1810.10627?context=stat. [48] CHOI E,BAHADORI M T,SONG L,et al.GRAM:graph-based attention model for healthcare representation learning[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2017:787-795. [49] ZHANG Jiani,SHI Xingjian,XIE Junyuan,et al.GaAN:gated attention networks for learning on large and spatiotemporal graphs[EB/OL].[2020-04-12].https://arxiv.org/abs/1803.07294. [50] LEE J B,ROSSI R,KONG X.Graph classification using structural attention[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York,USA:ACM Press,2018:1666-1674. [51] SHI Chuan,LI Yitong,ZHANG Jiawei,et al.A survey of heterogeneous information network analysis[J].IEEE Transactions on Knowledge and Data Engineering,2019,29(1):17-37. [52] WANG Xiao,JI Houye,SHI Chuan,et al.Heterogeneous graph attention network[C]//Proceedings of 2019 World Wide Web Conference.New York,USA:ACM Press,2019:2022-2032. [53] YANG Sibei,LI Guanbin,YU Yizhou.Dynamic graph attention for referring expression comprehension[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2019:4643-4652. [54] HA J W,PYO H,KIM J H.Large-scale item categorization in e-commerce using multiple recurrent neural networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:1225-1234. [55] WANG Daixin,CUI Peng,ZHU Wenwu.Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:1225-1234. [56] KIPF T N,WELLING M.Variational graph auto-encoders[EB/OL].[2020-04-12].https://arxiv.org/abs/1611.07308. [57] ZHU Dingyuan,CUI Peng,WANG Daixin,et al.Deep variational network embedding in Wasserstein space[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York,USA:ACM Press,2018:2827-2836. [58] YU Bin,YIN Haoteng,ZHU Zhanxing.Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[C]//Proceedings of International Joint Conference on Artificial Intelligence.New York,USA:ACM Press,2018:3634-3640. [59] SIMONYAN K,ZISSERMAN A.Two-stream convolu-tional networks for action recognition in videos[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2014:568-576. [60] YAN Sijie,XIONG Yuanjun,LIN Dahua.Spatial temporal graph convolutional networks for skeleton-based action recognition[EB/OL].[2020-04-12].https://arxiv.org/abs/1801.07455. [61] PEROZZI B,AL-RFOU R,SKIENA S.DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2014:701-710. [62] ABU-EL-HAIJA S,PEROZZI B,AL-RFOU R,et al.Watch your step:learning node embeddings via graph attention[C]//Proceedings of Advances in Neural Information Processing Systems.Washington D.C.,USA:IEEE Press,2018:9197-9207. [63] CHEN Shizhe,ZHAO Yida,JIN Qin,et al.Fine-grained video-text retrieval with hierarchical graph reasoning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:1-10. [64] DAI Hanjun,TIAN Yingtao,DAI Bo,et al.Syntax-directed variational autoencoder for molecule generation[EB/OL].[2020-04-12].http://www.quantum-machine.org/workshops/nips2017/assets/pdf/sdvae_workshop_camera_ready.pdf. [65] GOMEZ-BOMBARELLI R,Jennifer N.Automatic chemical design using a data-driven continuous representa-tion of molecules[J].ACS Central Science,2018,4(2):268-276. [66] CHEN Bo,SUN Le,HAN Xianpei.Sequence-to-action:end-to-end semantic graph generation for semantic parsing[C]//Proceedings of Annual Meeting of the Association for Computational Linguistics.Philadelphia,USA:ACL Press,2018:766-777. [67] JOHNSON D D.Learning graphical state transitions[EB/OL].[2020-04-12].https://openreview.net/pdf?id=HJ0NvFz xl. [68] LI Y,VINYALS O,DYER C,et al.Learning deep generative models of graphs[EB/OL].[2020-04-12].https://arxiv.org/abs/1803.03324. [69] CAO N D,KIPF T.MolGAN:an implicit generative model for small molecular graphs[EB/OL].[2020-04-12].https://arxiv.org/abs/1805.11973. [70] DIXIT A K,SHERRERD J J.Optimization in economic theory[M].Cambridge,USA:Oxford University Press,1990. [71] LIAO P,ZHAO H,XU K,et al.Graph adversarial networks:protecting information against adversarial attacks[EB/OL].[2020-04-12].http://arxiv.org/abs/2009.13504. [72] AKOGLU L,TONG H,KOUTRA D.Graph based anomaly detection and description:a survey[J].Data Mining and Knowledge Discovery,2015,29(3):626-688. [73] OTTERLO M V,WIERING M.Reinforcement learning and Markov decision processes[M].Berlin,Germany:Springer,2012. [74] DONNAT C,ZITNIK M,HALLAC D,et al.Learning structural node embeddings via diffusion wavelets[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2018:1320-1329. [75] MADJIHEUREM S,TONI L.Representation learning on graphs:a reinforcement learning application[EB/OL].[2020-04-12].https://arxiv.org/abs/1901.05351v1. [76] SRIDHAR M.Representation policy iteration[C]//Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence.Palo Alto,USA:AAAI Press,2005:372-379. [77] BOSCAINI D,MASCI J,MELZI S,et al.Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks[J].Computer Graphics Forum,2015,34:13-23. [78] LEE J,KIM H,LEE J,et al.Transfer learning for deep learning on graph-structured data[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.New York,USA:ACM Press,2017:2154-2160. [79] PAN S J,YANG Q.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359. [80] DICK R P,RHODES D L,WOLF W.TGFF:task graphs for free[C]//Proceedings of the 6th International Workshop on Hardware/Software Codesign.Washington D.C.,USA:IEEE Press,1998:1-5. [81] HUANG D,NAIR S,XU D,et al.Neural task graphs:generalizing to unseen tasks from a single video demonstration[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:8557-8566. [82] WANG X,YE Y,GUPTA A.Zero-shot recognition via semantic embeddings and knowledge graphs[C]//Proceed-ings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:6857-6866. [83] LEE C,FANG W,YEH C,et al.Multi-label zero-shot learning with structured knowledge graphs[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:1576-1585. [84] BOJCHEVSKI A,SHCHUR O,UGNER D Z,et al.NetGAN:generating graphs via random walks[EB/OL].[2020-04-12].https://arxiv.org/abs/1803.00816. [85] ZHANG Yue,LIU Qi,SONG Linfeng.Sentence-state LSTM for text representation[EB/OL].[2020-04-12].http://export.arxiv.org/abs/1805.02474. [86] XU D,ZHU Y,CHOY C B,et al.Scene graph generation by iterative message passing[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:5410-5419. [87] HU R,ROHRBACH A,DARRELL T,et al.Language-conditioned graph networks for relational reasoning[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2019:10293-10302. [88] WANG Haofen,DING Jun,HU Fanghuai,et al.Survey on large scale enterprise-level knowledge graph practices[J].Computer Engineering,2020,46(7):1-13.(in Chinese)王昊奋,丁军,胡芳槐,等.大规模企业级知识图谱实践综述[J].计算机工程,2020,46(7):1-13. [89] ULUTAN O,IFTEKHAR A S M,MANJUNATH B S.VSGNet:spatial attention network for detecting human object interactions using graph convolutions[EB/OL].[2020-04-12].https://arxiv.org/abs/2003.05541. |