作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (4): 1-12. doi: 10.19678/j.issn.1000-3428.0058382

• 热点与综述 • 上一篇    下一篇

图神经网络综述

王健宗, 孔令炜, 黄章成, 肖京   

  1. 平安科技(深圳)有限公司 联邦学习技术部, 广东 深圳 518063
  • 收稿日期:2020-05-20 修回日期:2020-10-27 发布日期:2020-11-20
  • 作者简介:王健宗(1983-),男,高级工程师、博士,主研方向为图神经网络、联邦学习、大数据技术;孔令炜(通信作者)、黄章成,硕士;肖京,教授级高级工程师、博士。
  • 基金资助:
    国家重点研发计划“云计算和大数据”重点专项(2018YFB1003503);国家重点研发计划“高性能计算”重点专项(2018YFB0204400);国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项(2017YFB1401202)。

Survey of Graph Neural Network

WANG Jianzong, KONG Lingwei, HUANG Zhangcheng, XIAO Jing   

  1. Federated Learning Technology Department, Ping An Technology(Shenzhen) Co., Ltd., Shenzhen, Guangdong 518063, China
  • Received:2020-05-20 Revised:2020-10-27 Published:2020-11-20

摘要: 随着互联网和计算机信息技术的不断发展,图神经网络已成为人工智能和大数据处理领域的重要研究方向。图神经网络可对相邻节点间的信息进行有效传播和聚合,并将深度学习理念应用于非欧几里德空间的数据处理中。简述图计算、图数据库、知识图谱、图神经网络等图结构的相关研究进展,从频域和空间域角度分析与比较基于不同信息聚合方式的图神经网络结构,重点讨论图神经网络与深度学习技术相结合的研究领域,总结归纳图神经网络在动作检测、图系统、文本和图像处理任务中的具体应用,并对图神经网络未来的发展方向进行展望。

关键词: 图神经网络, 图结构, 图计算, 深度学习, 频域, 空间域

Abstract: With the continuous development of the computer and Internet technologies,graph neural network has become an important research area in artificial intelligence and big data.Graph neural network can effectively transmit and aggregate information between neighboring nodes,and applies the concept of deep learning to the data processing of non-Euclidean space.This paper briefly introduces the research progress of graph computing,graph database,knowledge graph,graph neural network and other graph-based techniques.It also analyses and compares graph neural network structures based on different information aggregation modes in the spectral and spatial domain.Then the paper discusses research fields that combine graph neural network with deep learning,and summarizes the specific applications of graph neural networks in action detection,graph systems,text and image processing tasks.Finally,it prospects the future development research directions of graph neural networks.

Key words: graph neural network, graph structure, graph computing, deep learning, spectral domain, spatial domain

中图分类号: