[1] AGGARWAL C C, REDDY C K.Data clustering:algorithms and applications[M]. London, UK:Taylor and Francis Group, 2014:4-7. [2] ANTER A, HASSENIAN A E, OLIVA D.An improved fast fuzzy c-means using crow search optimization algorithm for crop identification in agricultural[J]. Expert Systems with Applications, 2019, 118:340-354. [3] DING S, JIA H, ZHANG L, et al. Research of semi-supervised spectral clustering algorithm based on pairwise constraints[J]. Neural Computer&Applications, 2014, 24:211-219. [4] WANG L, DING S, JIA H.An improvement of spectral clustering via message passing and density sensitive similarity[J]. IEEE Access, 2019, 7:101054-101062. [5] LUXBURG U V, A tutorial on spectral clustering[J]. Statist.Comput, 2007, 17(4): 395-416. [6] 牛科, 张小琴, 贾郭军.基于距离度量学习的集成谱聚类[J]. 计算机工程, 2015, 41(1): 207-210. NIU K, ZHANG X Q, JIA G J.Integrated spectral clustering based on distance metric learning[J]. Computer Engineering, 2015, 41(1): 207-210.(in Chinese) [7] 乔晓明, 潘晓英.基于稀疏图的鲁棒谱聚类算法[J]. 计算机应用研究, 2018, 35(6): 1-2. QIAO X M, PAN X Y.Robust spectral clustering algorithm based on sparse graph[J]. Application Research of Computers, 2018, 35(6): 1-2.(in Chinese) [8] ZELNIK-MANOR L, PERONA P.Self-tuning spectral clustering[C]//Proceedings of the Advances in Neural Information Processing Systems.Cambridge, USA:MIT Press, 2004:1601-1608. [9] LIU X Y, LI J W, YU H, et al. Adaptive spectral clustering based on shared nearest neighbors[J]. Journal of Chinese Computer System, 2011, 32(9): 1876-1880. [10] TAO X M, SONG S Y, CAO P D, et al. A spectral clustering algorithm based on manifold distance kernel[J]. Information and Control, 2012, 41(3): 307-313. [11] NG A Y, JORDAN M I, WEISS Y.On spectral clustering:analysis and an algorithm[C]//Proceedings of Advances in Neural Information Processing Systems.Cambridge, USA:MIT Press, 2002:849-856. [12] LI Z, LIU J, CHEN S, et al. Noise robust spectral clustering[C]//Proceedings of the 11th IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2007:361-368. [13] ZHANG X, LI J, YU H.Local density adaptive similarity measurement for spectral clustering[J]. Pattern Recognition Letters, 2011, 32(2): 352-358. [14] CAO J, CHEN P, YUN Z, et al. A max-flow-based similarity measure for spectral clustering[J]. ETRI Journal, 2013, 35(2): 311-320. [15] XIONG C, JOHNSON D M, CORSO J J.Spectral active clustering via purification of the $k$-nearest neighbor graph[C]//Proceedings of International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2012. [16] 程士卿, 郝问裕, 李晨, 等. 低秩张量分解的多视角谱聚类算法[J]. 西安交通大学学报, 2019, 54(3): 119-125. CHENG S Q, HAO W Y, LI C, et al. Low-rank tensor decomposition based multi-view spectral clustering algorithm[J]. Journal of Xi'an Jiaotong University, 2019, 54(3): 119-125.(in Chinese) [17] SUN L, LIU R, XU J, et al. An affinity propagation clustering method using hybrid Kernel function with LLE[J]. IEEE Access, 2018, 6:68892-68909. [18] JANANI R, VIJAYARANI S.Text document clustering using spectral clustering algorithm with particle swarm optimization[J]. Expert Systems with Applications, 2019, 134:192-200. [19] NKAYA T, KAYALGIL S, ÖZDEMIRAL N E.An adaptive neighborhood construction algorithm based on density and connectivity[J]. Pattern Recognition Letters, 2014, 52:17-24. [20] TAO X M, WANG R T, CHANG R, et al. Spectral clustering algorithm using density-sensitive distance measure with global and local consistencies[J]. Knowledge-Based Systems, 2019, 170:26-42. |