[1] LI Y M, YANG M, ZHANG Z F. A survey of multi-view representation learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(10):1863-1883. [2] SUN S L. A survey of multi-view machine learning[J]. Neural Computing and Applications, 2013, 23(7):2031-2038. [3] 黄奕轩, 杜世强, 余瑶, 等. 基于特征选择与鲁棒图学习的多视图聚类[J]. 计算机工程, 2022, 48(12):95-103. HUANG Y X, DU S Q, YU Y, et al. Multi-view clustering based on feature selection and robust graph learning[J]. Computer Engineering, 2022, 48(12):95-103.(in Chinese) [4] WANG H, YANG Y, LIU B, et al. A study of graph-based system for multi-view clustering[J]. Knowledge-Based Systems, 2019, 163:1009-1019. [5] CAO X C, ZHANG C Q, FU H Z, et al. Diversity-induced multi-view subspace clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington D. C., USA:IEEE Press, 2015:586-594. [6] 陶洋, 鲍灵浪, 胡昊. 结构约束的对称低秩表示子空间聚类算法[J]. 计算机工程, 2021, 47(4):56-61, 67. TAO Y, BAO L L, HU H. Structure-constrained symmetric low-rank representation algorithm for subspace clustering[J]. Computer Engineering, 2021, 47(4):56-61, 67.(in Chinese) [7] 江雨燕, 邵金, 李平. 融合自动权重学习的深度子空间聚类[J]. 计算机工程, 2022, 48(8):77-84, 97. JIANG Y Y, SHAO J, LI P. Deep subspace clustering fused with auto-weight learning[J]. Computer Engineering, 2022, 48(8):77-84, 97.(in Chinese) [8] KUMAR A, III H D. A co-training approach for multi-view spectral clustering[C]//Proceedings of the 28th International Conference on Machine Learning. New York, USA:ACM Press, 2011:393-400. [9] NG A, JORDAN M, WEISS Y. On spectral clustering:analysis and an algorithm[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Cambridge, USA:MIT Press, 2001:849-856. [10] YANG Y, WANG H. Multi-view clustering:a survey[J]. Big Data Mining and Analytics, 2018, 1(2):83-107. [11] ZHU X F, ZHANG S C, HE W, et al. One-step multi-view spectral clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(10):2022-2034. [12] HUANG J, NIE F, HUANG H. Spectral rotation versus in spectral clustering[C]//Proceedings of the 27th AAAI Conference on Artificial Intelligence.[S. l.]:AAAI Press, 2013:431-437. [13] ZHANG P, LIU X W, XIONG J, et al. Consensus one-step multi-view subspace clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(10):4676-4689. [14] PANG Y W, XIE J, NIE F P, et al. Spectral clustering by joint spectral embedding and spectral rotation[J]. IEEE Transactions on Cybernetics, 2020, 50(1):247-258. [15] ZIEGEL E R. The elements of statistical learning[J]. Technometrics, 2003, 45(3):267-268. [16] NIE F P, TIAN L, LI X L. Multiview clustering via adaptively weighted procrustes[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA:ACM Press, 2018:2022-2030. [17] XIE Y, TAO D C, ZHANG W S, et al. On unifying multi-view self-representations for clustering by tensor multi-rank minimization[J]. International Journal of Computer Vision, 2018, 126(11):1157-1179. [18] NIE F P, WANG X Q, HUANG H. Clustering and projected clustering with adaptive neighbors[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA:ACM Press, 2014:977-986. [19] KUMAR A, RAI P, DAUMÉ H. Co-regularized multi-view spectral clustering[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2011:1413-1421. [20] NIE F P, LI J, LI X L. Self-weighted multiview clustering with multiple graphs[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia:International Joint Conferences on Artificial Intelligence Organization, 2017:2564-2570. [21] CHAO G Q, SUN S L, BI J B. A survey on multi-view clustering[J]. IEEE Transactions on Artificial Intelligence, 2021, 2(2):146-168. [22] BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge, UK:Cambridge University Press, 2004. [23] ZHAN K, ZHANG C Q, GUAN J P, et al. Graph learning for multiview clustering[J]. IEEE Transactions on Cybernetics, 2018, 48(10):2887-2895. [24] ZHAN K, NIE F P, WANG J, et al. Multiview consensus graph clustering[J]. IEEE Transactions on Image Processing, 2019, 28(3):1261-1270. [25] ZONG L L, ZHANG X C, LIU X Y, et al. Weighted multi-view spectral clustering based on spectral perturbation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1):4621-4628. [26] 马吉, 刘瑞, 张建霞. 基于改进t-SNE算法的人体运动数据关键帧提取[J]. 计算机工程, 2016, 42(5):258-262. MA J, LIU R, ZHANG J X. Key frame extraction for human motion data based on improved t-SNE algorithm[J]. Computer Engineering, 2016, 42(5):258-262.(in Chinese) |